
KNMI, De Bilt, the Netherlands

This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement dated 29 June, 2011, between EUMETSAT and the Met Office, UK, by one or more partners within the NWP SAF. The partners in the NWP SAF are the Met Office, ECMWF, KNMI and Météo France.

Copyright 2017, EUMETSAT, All Rights Reserved.

<table>
<thead>
<tr>
<th>Change record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
</tr>
<tr>
<td>1.9</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>2.0.02</td>
</tr>
<tr>
<td>2.1</td>
</tr>
</tbody>
</table>
Contents

CONTENTS .. 1

1 INTRODUCTION .. 2
 1.1 AIMS AND SCOPE .. 2
 1.2 TESTING PENWP ... 3
 1.3 WHY USE PENWP? .. 4
 1.4 MODES OF USING PENWP ... 6
 1.5 CONVENTIONS ... 7

2 INSTALLING PENWP .. 8
 2.1 DIRECTORIES AND FILES .. 9
 2.2 INSTALLING THE BUFR LIBRARY ... 10
 2.3 INSTALLING THE GRIB API LIBRARY .. 10
 2.4 INSTALLING THE HDF5 LIBRARY ... 11
 2.5 MANUAL COMPILATION AND LINKING ... 11
 2.6 ENVIRONMENT VARIABLES ... 13

3 PROCESSING DETAILS .. 15
 3.1 COMMAND LINE OPTIONS .. 15
 3.2 SCRIPTS ... 18
 3.3 HDF CONVERSION TOOLS ... 18
 3.4 TEST DATA AND TEST PROGRAMS ... 20
 3.5 DOCUMENTATION ... 22

REFERENCES ... 23

APPENDIX A: ACRONYMS .. 25

APPENDIX B: DEVELOPMENT OF PENWP ... 26

APPENDIX C: HDF5 LIBRARY COPYRIGHT STATEMENT ... 27
1 Introduction

This document is the User Manual (UM) of the Pencil beam Wind Processor (PenWP) software package. The current introductory section gives general information about PenWP. Section 2 provides information on how to install, compile, and link the PenWP software. The use of PenWP is discussed in section 3.

More information about PenWP can be found in several other documents. The Product Specification (PS) [1] contains more details about the design of PenWP. Reading the UM and the PS should provide sufficient information to the user who wants to apply PenWP as a black box.

The Top Level Design (TLD) of the code and the Module Design (MD) of the PenWP code can be found in [2]. This document is of interest to developers and users who need more specific information on how the processing is done.

Please note that any questions or problems regarding the installation or use of PenWP can be addressed at the NWP SAF helpdesk at http://nwpsaf.eu/.

1.1 Aims and scope

The Pencil Beam Wind Processor (PenWP) is a software package written mainly in Fortran 90 with some parts in C for handling data from the SeaWinds (on QuikSCAT or ADEOS-II), OSCAT (on Oceansat-2 and ScatSat-1), HSCAT (on HY-2A) and RapidScat (on the International Space Station) scatterometer instruments, see table 1.1. Details of these instruments can be found in [3] and [4], respectively, and on several web sites, see e.g. information on the NASA and ISRO web sites. PenWP is intended to be a generic wind processor for Ku-band pencil beam scatterometer data. It will be adapted to handle data from future instruments like the OSCAT successor ScatSAT (from ISRO) once they become available. Some background information on the development history of PenWP can be found in Appendix B.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Satellite</th>
<th>Period of operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeaWinds</td>
<td>QuikSCAT</td>
<td>1999 – 2009</td>
</tr>
<tr>
<td>SeaWinds</td>
<td>ADEOS-II</td>
<td>2003</td>
</tr>
<tr>
<td>OSCAT</td>
<td>Oceansat-2</td>
<td>2009 – 2014</td>
</tr>
<tr>
<td>OSCAT</td>
<td>ScatSat</td>
<td>2016-</td>
</tr>
<tr>
<td>HSCAT</td>
<td>HY-2A</td>
<td>2011 -</td>
</tr>
<tr>
<td>RapidScat</td>
<td>ISS</td>
<td>2014 -</td>
</tr>
</tbody>
</table>

Table 1.1 Satellite instruments that can be processed with PenWP.

All Ku-band pencil beam scatterometers measure the ocean radar backscatter in very similar configurations and wavelengths and thus provide essentially the same geophysical measurements. After correction of the instrument gain calibration by ocean calibration and the performance of
verification tests, indeed standard processing of this category of instruments can be performed without loss of quality for any of the instruments. On the other side, the PenWP standard allows:

- A clearer separation of instrument and ocean response.
- Simplification of the processing of pencil-beam scatterometer data and further generic processing improvements.
- Ease of application.

PenWP generates surface winds based on pencil beam radar backscatter data. It has the ability to perform the ambiguity removal with the Two-dimensional Variational Ambiguity Removal (2DVAR) method and it supports the Multiple Solution Scheme (MSS). The output of PenWP consists of wind vectors which represent surface winds within the ground swath of the scatterometer. The input of PenWP is Normalized Radar Cross Section (NRCS), σ^0, data in BUFR format. These data may be near real-time. Conversion programs are included in the package to convert Hierarchical Data Format (HDF5) data from various instruments to BUFR. Output is written using the NOAA SeaWinds BUFR template by default or in the KNMI BUFR template with generic wind section. The NOAA BUFR template allows writing of up to 4 wind solutions whereas the KNMI BUFR template allows to write all 144 MSS wind solutions, see [1] for a description of these formats.

Apart from the scatterometer input data, PenWP needs Numerical Weather Prediction (NWP) model winds as a first guess for the Ambiguity Removal step. These data need to be provided in GRIB edition 1 or 2.

PenWP is developed as code which can be run in an operational setting as is done by, e.g., the Ocean and Sea Ice Satellite Application Facility (OSI SAF). The coding is mainly in Fortran 90 with some parts in C and has followed the procedures specified for the NWP SAF. Special attention has been paid to robustness and readability. PenWP may be run on every modern Unix or Linux machine. PenWP can also be run on a Windows machine if a Linux environment like the Windows Installer for Ubuntu (Wubi) is installed or on a MacOS machine (Darwin).

1.2 Testing PenWP

Modules are tested by test programs. Many test programs are part of the modules themselves. Test programs can be compiled separately. For PenWP, the description of the test programs and the results of the testing are reported in [5].
1.3 Why use PenWP?

Scatterometers provide valuable observational data over the world's oceans. Therefore, successful assimilation of scatterometer data in numerical weather prediction systems generally improves weather forecasts. PenWP has been developed to fully exploit scatterometer data. It is meant to form the key component of the observation operator for surface winds in data assimilation systems.

The input of the PenWP main program is BUFR data which has been converted from HDF5 using one of the conversion programs (for SeaWinds/RapidScat, OSCAT or HY-2A) included in the package. The PenWP BUFR wind product can also be read and reprocessed. Figure 1.1 gives an overview of the different ways to obtain input BUFR data from scatterometer input data. Depending on the grid spacing of the input BUFR product, PenWP will process the data on 25 km, 50 km or 100 km grid spacing. The SeaWinds/RapidScat HDF5 to BUFR converter can create BUFR data on 25, 50 or 100 km grid spacing by averaging the backscatter data in the level 2a input file to the requested gridding. The OSCAT HDF5 to BUFR converter will create BUFR data with the same grid spacing as the level 2a input file. This can be 50 km when using the level 2a input data from the Indian Space Research Organisation (ISRO), or 25 km when using level 1b input data from ISRO in combination with a separate OSCAT level 1b to level 2a converter which is also included in the software package and which is based on software provided by NOAA. HY-2A input data are currently available on 25 km grid spacing but can also be averaged to a 50 km product.

The general scheme of PenWP (and any other wind scatterometer data processor) is given in figure 1.2. Besides scatterometer data, NWP model GRIB input containing land-sea mask, sea surface
temperature and first guess winds over the globe is necessary. NWP data is not needed when PenWP is used on level 2 BUFR data which already contains model winds and ice flagging, or when ambiguity removal is omitted. See the description of the command line options in section 3.1 for more information on this.

Figure 1.2 PenWP processing scheme. The wind vectors and their probabilities after Quality Control may be fed directly in the Data Assimilation step of a Numerical Weather Prediction model.

The PenWP processing chain contains several steps (see figure 1.2):

1. Pre-processing. The input file is decoded and the radar backscatter (σ^0) values are written in the data structures of PenWP. The individual backscatter measurements are averaged to a backscatter value on Wind Vector Cell level. Some quality control on the input data is done.

2. Collocation with NWP data. The GRIB edition 1 or 2 files containing NWP data are read and the values for land fraction, sea surface temperature and first guess winds are interpolated and stored with the information of each WVC.

3. Inversion. The σ^0 values are compared to the Geophysical Model Function (GMF) by means of a Maximum Likelihood Estimator (MLE). The wind vectors that give the best description of the σ^0 values (the solutions) are retained. The MLE is also used to assign a probability to each wind vector. The normal scheme allows 4 solutions at most, but in the Multiple Solution Scheme (MSS) the maximum number of solutions is 144.

4. Quality Control. Solutions that lie far away from the GMF are likely to be contaminated by, e.g., sea ice or confused sea state. During Quality Control these solutions are identified and flagged.

5. Ambiguity Removal. This procedure identifies the most probable solution using some form of external information. PenWP uses a two-dimensional variational scheme (2DVAR) as default. A cost function is minimized that consists of a background wind field and all solutions with
their probability, using meteorological balance, mass conservation and continuity as constraints.

6. Quality Monitoring. The last step is to output quality indicators to an ASCII monitoring file and to write the results in a BUFR format output file.

Steps 2 and 6 of the processing chain are rather trivial; the real work is done in steps 1, 3, 4, and 5.

As further detailed in [1], PenWP profits from developments in

- Inversion and output of the full probability density function of the vector wind (Multiple Solution Scheme, MSS) [6], [7].
- Quality Control (QC) [8], [9].
- Meteorologically balanced Ambiguity Removal (2DVAR) [10], with optional empirical background error correlations [11].
- Quality monitoring.
- Capability to process scatterometer data on 100 km, 50 km and 25 km cell spacing.

A complete specification of PenWP can be found in the Product Specification in [1]. The software is based on generic genscat routines. Genscat lies at the base of all scatterometer wind processors developed within NWP SAF. Genscat is a library of generic code suitable for all scatterometer instruments. It contains routines for e.g. wind inversion, ambiguity removal, reading and writing of files in BUFR, GRIB, and other formats. It also contains more low-level routines for e.g. date/time handling and numerical conversions. These routines are discussed in more detail in [2].

Genscat is owned by the NWP SAF. The code base is quite stable and most development work is done in the instrument-specific code that is built on top of genscat. For each new wind processor release, a dedicated genscat version is delivered which is tested by running the new configuration in parallel to the operational one and carefully comparing the outputs. Genscat is used as basis for all scatterometer wind data processors.

1.4 Modes of using PenWP

There are several modes to assimilate the scatterometer data in NWP models using PenWP. Anyway, the first thing to assure oneself of is the absence of biases by making scatter plots between scatterometer and NWP model first guess for at least wind speed, but wind direction and wind components would also be of interest to guarantee consistency; for more detailed guidance on bias correction see [11].

The scatterometer wind product, available as a deliverable from the EUMETSAT OSI SAF project, could be the starting point for NWP data assimilation:

1. The unique solution at every WVC may be assimilated as if it were buoy data. This is the fastest way and one exploits the data to a large extent. For a small advantage, PenWP could be installed to provide 2DVAR solutions based on the local first guess.
2. The PenWP software may be used to modify the 3DVAR or 4DVAR data assimilation system to work with the ambiguous wind solutions and their probabilities at every WVC in order to provide the full information content to the data assimilation system. This represents some investment, but the approach is generic and applicable to all scatterometer data. With respect
to option 1, this option only occasionally leads to an improved ambiguity removal, but often in
dynamical atmospheric cases (storms or cyclones) that are really relevant.

Both options can be based on PenWP in standard or MSS mode [7]. MSS is somewhat more
dependent on the balance constraints in 2DVAR or your own data assimilation system than the
standard PenWP, but much less noisy. A substantial advantage is thus obtained by using option 2
and MSS, where potentially the full benefit of the scatterometer data is achieved. The mode of
using PenWP thus depends on the opportunities, experience, and time the user has to experiment
with scatterometer data in the NWP system under consideration; for more detailed guidance on
scatterometer data assimilation see [11].

PenWP can, of course, also be used to create a stand-alone wind product, e.g., for nowcasting
purposes. Such stand-alone wind products are deliverables of the OSI SAF project. More
information on this project can be found on http://www.osi-saf.org/.

1.5 Conventions

Names of physical quantities (e.g., wind speed components u and v), modules (e.g. `BufrMod`),
subroutines and identifiers are printed italic.

Names of directories and subdirectories (e.g. `penwp/src`), files (e.g. `penwp.F90`), and
commands (e.g. `penwp -f input`) are printed in Courier. Software systems in general are
addressed using the normal font (e.g. PenWP, genscat).

Hyperlinks are printed in blue and underlined (e.g. http://www.knmi.nl/scatterometer/).
2 Installing PenWP

The PenWP software package can be ordered from the NWP SAF website. A software request form is available on https://nwpsaf.eu/request_forms/index.html. PenWP is written in Fortran 90 (with a few low level modules in C) and is designed to run on a computer system under Linux or Unix. PenWP needs a Fortran 90 compiler and a C compiler for installation. PenWP comes along with a complete make system for compilation. In some cases, the Makefiles call installation scripts which are written in Bourne shell to enhance portability. When compiled, PenWP requires about 150-200 Mb disk space. The package is intended to be installed in a user directory (e.g. the home directory) and sufficient disk space and write permissions should be available. If the executable is to be installed into a system directory like /usr/bin, generally root permissions are necessary.

PenWP has been successfully implemented on many different computer platforms and with many different compilers and compiler versions. Hence we can not specify exact requirements to compiler versions. For example, PenWP has been tested recently with the following compiler versions:

- GCC version 4.8.3 of 20140911
- GNU Fortran (gfortran) version 4.8.3 20140911
- Portland Fortran compiler version 11.10-0
- G95 Fortran version GCC 4.0.3 (g95 0.94!) Jan 17 2013

In principle, PenWP may also run under Windows. However, it needs the BUFR and GRIB API libraries from ECMWF, and this poses some restrictions on the systems supported. Under Windows one must use a (free) Linux environment like Wubi (see http://www.ubuntu.com/download/desktop/windows-installer for more information and download).

To install PenWP, the following steps must be taken:

1. Copy the PenWP package (file PenWP<version>.tar.gz) to the directory from which PenWP will be applied, and unzip and untar it. This will create subdirectories penwp and genscat that contain all code needed (see section 2.1), and a script called compile_penwp for easy compilation.

2. Download the ECMWF BUFR library file bufr_000405.tar.gz (or another version not earlier than 000240) and copy it to directory genscat/support/bufr. Note that library versions 000388 and 000389 are not supported. See also section 2.2.

3. Download the ECMWF GRIB API library file grib_api-1.14.0-Source.tar.gz (or another version not earlier than 1.9.0) and copy it to directory genscat/support/grib. See also section 2.3.
4. Go to the top directory where the PenWP package (tar file) was copied to and run the
./compile_penwp script. The script will ask for the compiler used and it will invoke the
make system for compilation and linking of the software (see also section 2.5).

PenWP is now ready for use, provided that the environment variables discussed in section 2.6 have
the proper settings. See also sections 2.6 and 3.1 for directions on how to run PenWP. The four
steps in this section are sufficient to perform a standard compilation. Sections 2.2 to 2.5 provide
more detailed information, especially for users interested to use advanced compiler options.

2.1 Directories and files

All code for PenWP is stored in a file named PenWP<version>.tar.gz that is made
available in the framework of the NWP SAF project. This file should be placed in the directory
from which PenWP is to be run. After unzipping (with gunzip PenWP<version>.tar.gz)
and untarring (with tar -xf PenWP<version>.tar), the PenWP package is extracted in
subdirectories penwp and genscat, which are located in the directory where the tar file was
located. Subdirectories penwp and genscat each contain a number of files and subdirectories. A
copy of the release notes can also be found in the directory penwp/docs.

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>Look-up tables necessary in several processing steps</td>
</tr>
<tr>
<td>doc</td>
<td>Documentation, including this document</td>
</tr>
<tr>
<td>execs</td>
<td>Link to penwp executable, shell script for running PenWP</td>
</tr>
<tr>
<td>hscat</td>
<td>Tool to convert HSCAT HDF5 data to BUFR</td>
</tr>
<tr>
<td>oscat</td>
<td>Tool to convert OSCAT HDF5 data to BUFR</td>
</tr>
<tr>
<td>seawinds</td>
<td>Tool to convert SeaWinds and RapidScat HDF5 data to BUFR</td>
</tr>
<tr>
<td>src</td>
<td>Source code for PenWP program and supporting routines</td>
</tr>
<tr>
<td>tests</td>
<td>Example BUFR and GRIB input files for testing purposes.</td>
</tr>
</tbody>
</table>

Table 2.1 Contents of directory penwp.

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>ambrem</td>
<td>Ambiguity removal routines</td>
</tr>
<tr>
<td>ambrem/twodvar</td>
<td>KNMI 2DVAR ambiguity removal routines</td>
</tr>
<tr>
<td>icemodel</td>
<td>Ice screening routines</td>
</tr>
<tr>
<td>inversion</td>
<td>Inversion and quality control routines</td>
</tr>
<tr>
<td>support</td>
<td>General purpose routines sorted in subdirectories</td>
</tr>
<tr>
<td>support/BFGS</td>
<td>Minimization routines needed in 2DVAR</td>
</tr>
<tr>
<td>support/bufr</td>
<td>BUFR tables (in subdirectory) and file handling routines</td>
</tr>
<tr>
<td>support/Compiler_Features</td>
<td>Compiler specific routines, mainly command line handling</td>
</tr>
<tr>
<td>support/convert</td>
<td>Conversion between wind speed/direction and (u) and (v)</td>
</tr>
<tr>
<td>support/datetime</td>
<td>Date and time conversion routines</td>
</tr>
<tr>
<td>support/ErrorHandler</td>
<td>Error handling routines</td>
</tr>
<tr>
<td>support/file</td>
<td>File handling routines</td>
</tr>
<tr>
<td>support/grib</td>
<td>GRIB file handling routines</td>
</tr>
<tr>
<td>support/hdf5</td>
<td>HDF5 handling routines</td>
</tr>
<tr>
<td>support/num</td>
<td>Numerical definitions and number handling routines</td>
</tr>
</tbody>
</table>
Tables 2.1 and 2.2 list the contents of directories penwp and genscat, respectively, together with the main contents of the various parts. Depending on the distribution, more directories may be present, but these are of less importance to the user.

Directories penwp and genscat and their subdirectories contain various file types:

- Fortran 90 source code, recognizable by the .F90 extension;
- C source code, recognizable by the .c extension;
- Files and scripts that are part of the make system for compilation like Makefile_thisdir, Makefile, Objects.txt, use_, and Set_Makeoptions (see 2.3.4 for more details);
- Scripts for the execution of PenWP in directory penwp/execs;
- Look-up tables and BUFR tables needed by PenWP;
- Files with information like Readme.txt.

After compilation, the subdirectories with the source code will also contain the object codes of the various modules and routines.

2.2 Installing the BUFR library

PenWP needs the ECMWF BUFR library for its input and output operations. Only ECMWF is allowed to distribute this software. It can be obtained free of charge from ECMWF at the web page https://software.ecmwf.int/wiki/display/BUFR/BUFRDC+Home. The package contains scripts for compilation and installation. The reader is referred to this site for assistance in downloading and installing the BUFR Library.

Directory genscat/support/bufr contains the shell script make.bufr.lib. It unzips, untars, and compiles the BUFR library file which is downloaded from ECMWF and placed into this directory. This script is part of the genscat make system and it is automatically invoked when compiling genscat. The current version is tested with BUFR version 000405, earlier versions as of 000240 can also be used. Note that library versions 000388 and 000389 are not supported.

BUFR file handling at the lowest level is difficult to achieve. Therefore some routines were coded in C. These routines are collected in library bufrio (see also [2]). Its source code is located in file bufrio.c in subdirectory genscat/support/bufr. Compilation is done within the genscat make system and requires no further action from the user (see 2.5).

2.3 Installing the GRIB API library

PenWP needs the ECMWF GRIB API library for its input operations. Only ECMWF is allowed to distribute this software. It can be obtained free of charge from ECMWF at the web page https://software.ecmwf.int/wiki/display/GRIB/Home. The package contains scripts for compilation and installation. The reader is referred to this site for assistance in downloading and installing the
GRIB API Library.

Directory `genscat/support/grib` contains the shell script `make.grib.lib`. It unzips, untars, and compiles the GRIB API library file which is downloaded from ECMWF and placed into this directory. This script is part of the genscat make system and it is automatically invoked when compiling genscat. The current version is tested with GRIB API version 1.14.0, but later versions (or earlier, but not earlier than 1.9.0) can be used. However, PenWP is not tested with later versions.

By default, the library for handling GRIB messages that are compressed using the JPEG algorithm, (as is done e.g. by NCEP) is not linked in the compilation process. This option can be activated by adding the link option `-lopenjpeg` to the Makeoptions file in directory `genscat`:

```
LINKFLAGS = $(LIB) -lopenjpeg
```

After this change, the software in directories `genscat/support/grib` and `penwp/src` needs to be recompiled using the commands `make clean` and `make`.

2.4 Installing the HDF5 library

The HDF5 software library from the HDF Group (http://www.hdfgroup.org/) is used by PenWP for reading and decoding HDF5 input files. See Appendix C for the copyright statement and the terms of use of this software. Binary libraries, compiled for different Linux and Unix platforms are delivered with PenWP in directory `genscat/support/hdf5/hdfgroup`. The `Makefile` in this directory tries to determine the operating system and creates a symbolic link from one of the binary libraries to a file called `libhdf5.a`. For example, directory `genscat/support/hdf5/hdfgroup` contains a library called `libhdf5_lin_i386.a` which is compiled for the 32 bits Linux platform. The `Makefile` will link this file to `libhdf5.a`, which in its turn will be linked when compiling PenWP. The same mechanism is used for some of the include files (.h) in this directory, which are also platform specific. This directory also contains the binary SZIP and ZLIB libraries that are used in conjunction with the HDF5 library.

Note that the collection of delivered libraries is by no means complete and it may be necessary for some platforms to download specific versions of the HDF5 software libraries from http://www.hdfgroup.org/ and to place them under the correct name in `genscat/support/hdf5/hdfgroup`. See the file `Readme.txt` in this directory for more information.

2.5 Manual compilation and linking

PenWP can be manually compiled (without using the `compile_penwp` script) when the user is interested to use more advanced compiler options. This is done in three steps:

1. Set the compiler environment variables according to the choice entered on request. This can be done by running the appropriate `use_*` scripts in directory `genscat`.

2. Go to directory `genscat` and type `make`.

3. Go to directory `penwp` and type `make` to produce the executable `penwp` in directory `penwp/src`.

11
Before activating the make system, some environment variables identifying the compiler should be set. These variables are listed in table 2.4. The environment variables in table 2.4 can be set by using one of the `use_*` scripts located in directory `genscat`. Table 2.5 shows the properties of these scripts. The scripts are available in Bourne shell (extension `.bsh`) and in C shell (extension `.csh`). Note that if one of the environment variables is not set, the default `f90` and `cc` commands on the Unix platform will be invoked. Note that in the top directory a script called `compile_penwp` is provided that asks the user which compiler he wants to use and invokes the appropriate `use_*` script (step 1 above), after which the compilation in the `genscat` and `penwp` directories is performed (steps 2 and 3 above).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>GENSCAT_F77</code></td>
<td>Reference to Fortran 77 compiler</td>
</tr>
<tr>
<td><code>GENSCAT_F90</code></td>
<td>Reference to Fortran 90 compiler</td>
</tr>
<tr>
<td><code>GENSCAT_CC</code></td>
<td>Reference to C compiler</td>
</tr>
<tr>
<td><code>GENSCAT_LINK</code></td>
<td>Reference to linker for Fortran objects</td>
</tr>
<tr>
<td><code>GENSCAT_CLINK</code></td>
<td>Reference to linker for C objects</td>
</tr>
<tr>
<td><code>GENSCAT_SHLINK</code></td>
<td>Reference to linker for shared objects</td>
</tr>
</tbody>
</table>

Table 2.4 Environment variables for compilation and linking.

<table>
<thead>
<tr>
<th>Script</th>
<th>Fortran compiler</th>
<th>C compiler</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>use_g95</code></td>
<td><code>g95</code></td>
<td><code>gcc</code></td>
<td>GNU compilers by Andy Vaught</td>
</tr>
<tr>
<td><code>use_gfortran</code></td>
<td><code>gfortran</code></td>
<td><code>gcc</code></td>
<td>GNU-GCC compiler collection</td>
</tr>
<tr>
<td><code>use_ifort</code></td>
<td><code>ifort</code></td>
<td><code>icc</code></td>
<td>Intel Fortran and C compilers</td>
</tr>
<tr>
<td><code>use_pgf90</code></td>
<td><code>pgf90</code></td>
<td><code>gcc</code></td>
<td>Portland Fortran compiler</td>
</tr>
</tbody>
</table>

Table 2.5 Properties of the `use_*` scripts.

Example: To select the GNU `g95` compiler under Bourne, Bash or Korn shell type `. use_g95.bsh`, the dot being absolutely necessary in order to apply the compiler selection to the current shell. Under C shell the equivalent command reads `source use_g95.csh`.

If the user wants to use a Fortran or C compiler not included in table 2.6, he can make his own version of the `use_*` script, or set the environment variables for compilation and linking manually.

PenWP is delivered with a complete make system for compilation and linking under Unix or Linux. The make system is designed as portable as possible, and system dependent features are avoided. As a consequence, some tasks must be transferred to shell scripts. The make system consists of two parts: one for PenWP and one for genscat. The genscat part should be run first. For compilation and linking of the genscat part, the user should move to the `genscat` directory and simply enter `make`.

The `Makefile` refers to each subdirectory of genscat, invoking execution of the local `Makefile` and, in cases where a subdirectory contains code as well as a subdirectory containing code, `Makefile_thisdir`. The settings for the compilers are located in file `Makeoptions` in directory `genscat`. This file is generated by the Bourne shell script `Set_Makeoptions`
which is called automatically by the genscat make system. The local Makefile in subdirectory
genscat/support/bufr calls the script make.bufr.lib for compilation of the BUFR
library (see 2.2). It also contains the Fortran program test_modules that generates the binary
BUFR tables B and D from the ASCII tables already present, and is executed automatically by the
make system. Program test_modules can also be used to test the genscat BUFR module. The
Makefile in subdirectory genscat/support/bufr/bufr_tables calls some shell
scripts, which make symbolic links (using the ln -s command) of the generic BUFR tables B
and D under different names. There are four different naming conventions in BUFR version
000240 to 000280, and binary files are generated for each of them. Further information on the
make system is given in the inline comments in the scripts and Makefiles.

Compilation and linking of the PenWP part is done in a similar manner: go to the penwp directory
and enter make. As with genscat, the make system will execute Makefiles in every subdirectory of
penwp. The result is the executable penwp in directory penwp/src and a symbolic link to this
executable in penwp/execs. PenWP is now ready for use. The make system of PenWP doesn’t
need any further files except the genscat file Makeoptions. This is the reason why genscat
should be compiled first.

When recompiling (part of) PenWP or genscat with the make system, for instance when installing
a new version of the BUFR library, one should be sure to enter make clean first. To recompile
part of the software invoke the make system where needed. The compiler settings from file
Makeoptions in directory genscat will be used again. If a change in these settings is
necessary, type make clean in the genscat directory and Makeoptions will be removed.
Don’t forget to rerun the use_* commands to select the right compiler.

2.6 Environment variables

PenWP needs a number of environment variables to be set. These are listed in table 2.3 together
with their possible values.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BUFR_TABLES</td>
<td>genscat/support/bufr/bufr_tables/</td>
</tr>
<tr>
<td>$GRIB_DEFINITION_PATH</td>
<td>genscat/support/grib/definitions</td>
</tr>
<tr>
<td>$LUT_FILENAME_KU_HH</td>
<td>penwp/data/<platform>/nscat4_250_73_51_hh.dat</td>
</tr>
<tr>
<td>$LUT_FILENAME_KU_VV</td>
<td>penwp/data/<platform>/nscat4_250_73_51_vv.dat</td>
</tr>
<tr>
<td>$LUTSDIR</td>
<td>penwp/data</td>
</tr>
<tr>
<td>$NBEC_FILE</td>
<td>genscat/ambrem/nbec_ascat-a-coa_cos-auto-4000_tccal_obsercorr.dat</td>
</tr>
</tbody>
</table>

Table 2.3 Environment variables for PenWP.

The $BUFR_TABLES variable guides PenWP to the BUFR tables needed to read the input and
write the output. The $GRIB_DEFINITION_PATH variable is necessary for a proper functioning
of the GRIB decoding software.

The variables $LUT_FILENAME_KU_HH and $LUT_FILENAME_KU_VV point PenWP to the
correct binary Ku band GMF lookup tables (LUT) at HH and VV polarisation, respectively. They
should contain a file name including a valid path. NSCAT lookup tables are delivered with PenWP
in big endian and little endian binary formats, the <platform> part in the paths should be set to
big endian or **little endian** depending on your computer platform type.

The variable `$LUTSDIR` points PenWP to a directory containing some look up tables that are used to normalise the inversion residuals and to compute atmospheric attenuations for the Ku band radar data. The necessary tables are delivered with PenWP.

The variable `$NBEC_FILE` points PenWP to the file from which it can read the Numerical Background Error Correlations, to be used optionally in 2DVAR.

It may happen that running PenWP results in an error message like ‘error while loading shared libraries: libzzz’. In such cases it may help to locate the specified shared object file on your system and to set the `$LD_LIBRARY_PATH` variable to this directory.
3 Processing details

3.1 Command line options

The PenWP main program is started from directory penwp/execs with the command

`penwp [options/modes] -f <input file> [-nwpfl <file>]`

with <> indicating obligatory input, and [] indicating non-obligatory input. For normal PenWP operation we recommend to use the penwp/execs/penwp_run script which will call PenWP and pass its command line options to the PenWP executable. The following command line options are available.

- **-f <input file>** Process a BUFR input file with name input file.
 PenWP can only handle data in BUFR format. Conversion tools are available to convert HDF level 2a or level 2b data from SeaWinds, RapidScat, OSCAT or HSCAT to BUFR, see below in this section.
 Example: `penwp -f QS_D08001_S0152_E0323_B4444445` will process this file. The results will be written to a new BUFR file, see below in this section for the output file naming convention. It is possible to concatenate multiple BUFR input files into one using the Unix `cat` command.

- **-nwpfl <file>** Read a list of GRIB file names in the file named file.
 The files in the list are read and the GRIB edition 1 or 2 data are used in the wind processing. The most convenient way to construct a file list is to use the Unix command `ls -1 GRIB file pattern > file`. Note that the ‘-1’ contains the number ‘1’ and not the character ‘l’. If no GRIB data are used, only the land masking which is present in the level 2a/b files will be used. No ice screening will be performed (unless the -icemodel option is used). Ambiguity removal will be performed only if model winds are already present in the input BUFR file (i.e., in case of reprocessing of a level 2 file) or if the -armeth 1strank option is used (i.e., selection of the 1st rank wind solution). If level 2 data are reprocessed and no NWP data are read, the qual_sigma0 flag which was set in the initial processing is evaluated and it will be used to determine if a WVC contains suitable backscatter data for wind inversion.

Several options for the processing can be invoked.

- **-noinv** Switch off inversion (default is switched on).
 This option is useful to save processing time when wind inversion is already done in the input file, i.e., when a PenWP BUFR output file is reprocessed. For example, the NWP background winds can be replaced...
and the ambiguity removal performed in one run without repeating the wind inversion.

-icemodel
Switch on ice screening (default is switched off).
When switched off, no ice screening is done, except when a GRIB file containing sea surface temperature is read. The command line option invokes the Bayesian ice model which keeps the history of each location and uses this history to determine the sea or ice state of a WVC. The ice screening can be combined with the ice screening which is done in the GRIB collocation. In this case, the SST of the GRIB file will be used to assign a WVC as ‘surely water’ when the SST is above+5.0 °C, to support the Bayesian ice screening.

-noamb
Switch off ambiguity removal (default is switched on).
This option is useful if the selection of the scatterometer wind solution is left to the data assimilation procedure of a Numerical Weather Prediction model. In other words: the NWP model is fed with a number of solutions and their probability, and finds the best value when comparing with other data sources.

-nowrite
Do not produce BUFR output (default is switched on).

-noc
Perform σ^0 calibration (NWP Ocean Calibration, default is switched off).
A calibration of the σ^0 values is performed, i.e., the backscatter values are changed in order to obtain better calibrated winds.

-mss
Use the Multiple Solution Scheme for Ambiguity Removal.
If the Multiple Solution Scheme (MSS) is switched on, PenWP internally works with 144 different solutions for the wind vector. If MSS is switched off, PenWP calculates four solutions at most. MSS is switched off as default. Note that in the NOAA BUFR format, only 4 out of these 144 wind solutions will be written. The KNMI BUFR format may contain up to 144 wind solutions, see the -genericws option.

-nbec
Use Numerical Background Error Correlations (NBECs) in 2DVAR instead of the default Gaussian error correlations. NBECs give more weight to the observations, resulting in better agreement with buoy winds and less frequent setting of the KNMI QC and VarQC flags at the cost of increased processing time.

-armeth <meth>
Choose ambiguity removal method.
Valid methods are: lstrank - the wind solution with the lowest distance to the GMF (residual) is selected, bgclosest - the wind solution closest to the background model wind is selected, 2dvar - 2DVAR, see [2]. The default is 2dvar.

-genericws <N>
This option generates a second BUFR output file in the KNMI generic wind section format.
The number of wind solutions <N> to be written into the KNMI BUFR
format is flexible due to the use of the so-called delayed replication and can be chosen between 1 (providing only the selected wind solution) and 144 (providing all wind solutions in MSS processing). The KNMI BUFR format is not approved by the WMO but can be handled by generic decoders.

-`binof <file>`
Write selected data of each WVC to a binary output file.
Data are written to a binary file `<file>`. This option is intended for research activities. More information on the file format can be found in the Fortran code of PenWP.

-`mon`
Switch on the monitoring function.
The monitoring results are written in an ASCII file with the name `<name of BUFR output file>.mon`. By default, no monitoring file is produced.

-`verbosity <L>`
Set the verbosity level to L (default is 0).
If the verbosity level is -1 or smaller, no output is written to the standard output except error messages. If the verbosity level equals 0 only some top level processing information is written to output. If the verbosity level is 1 or greater, also additional information is given.

Further, there is an option `par` to change the 2DVAR settings, but this option is for internal research purposes and is not supported for the public releases.

The normal mode of operation of PenWP is wind processing, i.e., a BUFR file is read and the various processing steps are performed.

Besides the wind processing, some other modes of operation are available. If one of the modes is invoked, PenWP internally sets some of the options in order to obtain the desired result. Note that these modes are always used in combination with the `-f <input file>` option.

-`mononly`
Write the monitoring file without any processing.

-`properties`
Write some properties of the last row of the input file.
The data acquisition date and time of the last row are written to a small ASCII output file `properties.txt`.

-`writeonly`
Write all data to BUFR output without processing.
This mode is useful to copy an input file to BUFR output without processing.

Running the command `penwp` without any command line options will display a list of all available command line options with a short explanation on the console. Running the command `penwp` with an illegal option will produce the same output, but preceded by an error message.

The output will be written into a BUFR file with the name

```
INSTR_YYYYMMDD_HHMSS_SAT_ORBIT_srv_o_SMPL_ovw_l2.bufr,
```

where

- **INSTR** is the instrument, seawi, oscat, hscat or rapid.
• YYYYMMDD_HHMMSS is the acquisition date and time (UTC) of the first data in the file.
• SAT is the satellite (6 characters), qscat_, adeos2, ocsat2, scasa1, hy2a_ or iss__.
• ORBIT is the orbit number (5 digits) of the first data in the file.
• SMPL is the WVC sampling (cell spacing), 1000 for 100 km, 500 for 50 km and 250 for 25 km.
• If the above convention results in identical input and output file names, the extension ‘~’ is added to the output file name.
• If the option –genericws (see above) is used, a second BUFR file with the same name and extension ‘.genws’ is written.

Example: the output file name can look like:
oscat_20111107_135116_ocsat2_11243_o_500_ovw_l2.bufr
(Oceansat-2 50 km) or
seawi_20080107_114220_qscat__44536_o_1000_ovw_l2.bufr
(QuikSCAT 100 km)

3.2 Scripts

Directory penwp/execs contains a Bourne shell script penwp_run for running penwp with the correct environment variables. The script can be invoked with all valid command line options for penwp.

3.3 HDF conversion tools

Several tools are available to convert HDF data from SeaWinds/RapidScat, OSCAT and HSCAT to BUFR.

Directory penwp/seawinds contains the executable seawinds_hdf2bufr. It can read SeaWinds or RapidScat level 2a and level 2b files in HDF and will write the data in BUFR format. For level 2a, only the backscatter information in the BUFR output will be filled; for level 2b, only the wind information in the BUFR output will be filled. In the latter case wind processing is not possible since the HDF level 2b product does not contain \(\sigma^0 \) data but only winds. The backscatter ‘eggs’ in the level 2a data are accumulated to WVC level backscatter data, see[1]. Note that the SeaWinds data need to be converted from HDF4 to HDF5 before running seawinds_hdf2bufr. This can be done using a tool called h4toh5 which is available from the HDF Group: http://www.hdfgroup.org/h4toh5/:
h4toh5 QS_S2A44444.20080021532 QS_S2A44444.20080021532.h5

The resulting file can be used as input for seawinds_hdf2bufr:

seawinds_hdf2bufr [options] -f <HDF5 file> -o <BUFR file>

to create one output file containing all data, or:

seawinds_hdf2bufr [options] -f <HDF5 file> -wpo

to create one output file per orbit. The available options are:
-properties
Write some properties of the last row of the input file.
The acquisition date and time are written to a small ASCII output file properties.txt.

-stride 2|4
Accumulate 25 km level 2a data with a stride of 2 or 4 to a 50 km or 100 km BUFR product. The 100 km product is not available for RapidScat.

Directory penwp/oscat contains the executable oscat_hdf2bufr. It can read OSCAT level 2a and level 2b data from ISRO and will write the data in BUFR format. For level 2a, only the backscatter information in the BUFR output will be filled; for level 2b, only the wind information in the BUFR output will be filled. In the latter case wind processing is not possible since the level 2b product does not contain σ^0 data. The conversion can be done with:

```
oscat_hdf2bufr [options] -f <HDF5 file> -o <BUFR file>
```

The available options are:

-allswath
Distribute outer swath (VV-polarised) slices over four WVC beams.
This option will re-distribute the VV slice information over four (more or less independent) backscatter data. The VV fore slice data will be split into two sets and the VV aft slice data as well. Slices are accumulated and averaged based on their azimuth angles, see [1].

-properties
Write some properties of the last row of the input file.
The acquisition date and time are written to a small ASCII output file properties.txt.

Directory penwp/oscat/l1b_l2a contains the executable oscat_l1b_l2a. It can read OSCAT level 1b data from ISRO and will write a level 2a HDF5 file with 25 km or 50 km WVC spacing, which can be further processed with oscat_hdf2bufr and PenWP. The conversion can be done with:

```
oscat_l1b_l2a [options] -f <L1B file>
```

The available options are:

-d
Output directory where the level 2a file is written. By default, the current directory is used.

-s
WVC spacing of level 2a output in km. Allowed values are 25 and 50.

Directory penwp/hscat contains the executable hscat_hdf2bufr. It can read HSCAT level 2a and level 2b data from NSOAS and will write the data in BUFR format. For level 2a, only the backscatter information in the BUFR output will be filled; for level 2b, only the wind information in the BUFR output will be filled. In the latter case wind processing is not possible since the level 2b product does not contain σ^0 data. The conversion can be done with:

```
hscat_hdf2bufr [options] -f <HDF5 file> -o <BUFR file>
```

The available options are:

-allswath
Distribute outer swath (VV-polarised) slices over four WVC beams.
This option will re-distribute the VV slice information over four (more or
less independent) backscatter data. The VV fore slice data will be split into two sets and the VV aft slice data as well. Slices are accumulated and averaged based on their azimuth angles, see [1].

- **properties**

Write some properties of the last row of the input file. The acquisition date and time are written to a small ASCII output file `properties.txt`.

- **-stride 2**

Accumulate 25 km level 2a data with a stride of 2 to a 50 km BUFR product.

3.4 Test data and test programs

Directory `penwp/tests` contains one HDF5 file for testing the PenWP executable. File `S1L2A2012006_12113_12114_2.h5.gz` contains (gzipped) OSCAT level 2a data from 6 January 2012, 13:51 to 14:03 UTC with 50 km cell spacing, as obtained from ISRO. The files `ECMWF*.grib` contain the necessary NWP data (SST, land-sea mask and wind forecasts) to perform the NWP collocation step.

The user can test the proper functioning of PenWP using the files in the `penwp/tests` directory. To do this, first create a small file containing a list of NWP files:

```bash
ls -1 ECMWF_* > nwpflist
```

Note that the `-l` contains the number `1` and not the character `l`. Then, gunzip the HDF5 file:

```bash
gunzip -c S1L2A2012006_12113_12114_2.h5.gz > S1L2A2012006_12113_12114_2.h5
```

Set the `$BUFR_TABLES` environment variable:

```bash
export BUFR_TABLES=../../genscat/support/bufr/bufr_tables/
```

for Korn shell or Bourne shell or

```bash
setenv BUFR_TABLES ../../../genscat/support/bufr/bufr_tables/
```

for C shell. Convert the level 2a input file to BUFR:

```bash
../execs/oscat_hdf2bufr -f S1L2A2012006_12113_12114_2.h5 -o oscat.bufr
```

Then run PenWP:

```bash
../execs/penwp_run -f oscat.bufr -nwpl nwpflist -mss -mon -noc
```

The result should be an OSCAT level 2 file in BUFR format, called `oscat_20120106_135109_oscat2_12113_o_500_ovw_12.bufr`.

Figure 1.3 shows the global coverage of the test run. The colours indicate the magnitude of the wind speed as indicated by the legend.

Note that conversion software is delivered with PenWP to convert the BUFR output files into ASCII or NetCDF formats which are more convenient to visualise using publicly available software tools. These tools can be found in directories `genscat/tools/bufr2asc` and `genscat/tools/bufr2nc` and are ready to use after compilation of PenWP. More
information on the use of this software is available on
http://www.knmi.nl/scatterometer/bufr_reader/.

Figure 1.3 Global coverage of the test run. Wind speed results for the OSCAT 50 km product are shown.

Directory genscat/support/bufr contains a test program named test_modules. It is
invoked by the genscat make system to construct the BUFR tables required by PenWP, but it can
also be used to test the genscat BUFR module. The program is used as follows:

test_modules [BUFRinput]

where BUFRinput is the BUFR input file.

If omitted, the program uses as default input the file testreading.bufr in directory
genscat/support/bufr. The output is written to a BUFR file named
testwriting.bufr. The directory also contains a shell script named run_test_modules
that sets the environment variables required and executes the program. Further information can be
found in the comment lines of the source code of test_modules.

Directory genscat/support/grib contains test programs named test_read_GRIB1,
test_read_GRIB2 and test_read_GRIB3. The programs can be run from the command
line and read in the GRIB file testfile.grib in directory genscat/support/grib.
Some properties of this file are written to ASCII output files. Note that the environment variable
$GRIB_DEFINITION_PATH needs to be set to directory
(...)/genscat/support/grib/definitions.

Subdirectories Compiler_Features, convert, ErrorHandler, singletonfft, file,
BFGS, num, hdf5, sort and datetime of genscat/support contain test programs for the
module in that subdirectory. The test programs write their result to the standard output. In some
cases, a copy of the output is contained in the .output files for comparison. Table 3.1 gives an
overview of the genscat test programs.
<table>
<thead>
<tr>
<th>Subdirectory</th>
<th>Program name</th>
<th>Output file</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>bufr</td>
<td>test_modules</td>
<td>testwriting.bufr</td>
<td>Part of make system</td>
</tr>
<tr>
<td>grib</td>
<td>test_read_GRIB*</td>
<td>several</td>
<td>GRIB handling</td>
</tr>
<tr>
<td>Compiler_Features</td>
<td>TestCompiler_Features</td>
<td>-</td>
<td>Command line handling</td>
</tr>
<tr>
<td>convert</td>
<td>test_convert</td>
<td>test_convert.output</td>
<td>Wind speed conversion</td>
</tr>
<tr>
<td>ErrorHandler</td>
<td>TestErrorHandler</td>
<td>-</td>
<td>Error handling</td>
</tr>
<tr>
<td>singletonfft</td>
<td>TestSingleton</td>
<td>-</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>file</td>
<td>TestLunManager</td>
<td>TestLunManager.output</td>
<td>File management</td>
</tr>
<tr>
<td>BFGS</td>
<td>Test_BFGS</td>
<td>-</td>
<td>Minimization</td>
</tr>
<tr>
<td>num</td>
<td>test_numerics</td>
<td>test_numerics.output</td>
<td>Numerical issues</td>
</tr>
<tr>
<td>hdf5</td>
<td>TestHDF5</td>
<td>testfile.h5</td>
<td>Read/write HDF5 files</td>
</tr>
<tr>
<td>sort</td>
<td>SortModTest</td>
<td>SortModTest.output</td>
<td>Array sorting</td>
</tr>
<tr>
<td>datetime</td>
<td>TestDateTimeMod</td>
<td>TestDateTimeMod.output</td>
<td>Date and time conversion</td>
</tr>
</tbody>
</table>

Table 3.1 Test programs in genscat/support.

3.5 Documentation

Directory `penwp/doc` contains documentation on PenWP, including this document. Further information can be found in the readme text files, and in the comments in scripts, Makefiles and source code.
References

Appendix A: Acronyms

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCAT</td>
<td>Advanced SCATterometer on MetOp</td>
</tr>
<tr>
<td>AWDP</td>
<td>ASCAT Wind Data Processor</td>
</tr>
<tr>
<td>BUFR</td>
<td>Binary Universal Form for the Representation of data</td>
</tr>
<tr>
<td>C-band</td>
<td>Radar wavelength at about 5 cm</td>
</tr>
<tr>
<td>ERS</td>
<td>European Remote Sensing satellites</td>
</tr>
<tr>
<td>ECMWF</td>
<td>European Centre for Medium-range Weather Forecasts</td>
</tr>
<tr>
<td>EUMETSAT</td>
<td>European Organization for the Exploitation of Meteorological Satellites</td>
</tr>
<tr>
<td>genscat</td>
<td>generic scatterometer software routines</td>
</tr>
<tr>
<td>GMF</td>
<td>Geophysical model function</td>
</tr>
<tr>
<td>HDF5</td>
<td>Hierarchical Data Format version 5</td>
</tr>
<tr>
<td>ISS</td>
<td>International Space Station</td>
</tr>
<tr>
<td>KNMI</td>
<td>Koninklijk Nederlands Meteorologisch Instituut (Royal Netherlands Meteorological Institute)</td>
</tr>
<tr>
<td>Ku-band</td>
<td>Radar wavelength at about 2 cm</td>
</tr>
<tr>
<td>L1b</td>
<td>Level 1b product</td>
</tr>
<tr>
<td>LUT</td>
<td>Look up table</td>
</tr>
<tr>
<td>Metop</td>
<td>Meteorological operational Satellite</td>
</tr>
<tr>
<td>MLE</td>
<td>Maximum Likelihood Estimator</td>
</tr>
<tr>
<td>MSS</td>
<td>Multiple Solution Scheme</td>
</tr>
<tr>
<td>NCEP</td>
<td>United States National Centers for Environmental Prediction</td>
</tr>
<tr>
<td>NOAA</td>
<td>United States National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NRCS</td>
<td>Normalized Radar Cross-Section (σ^0)</td>
</tr>
<tr>
<td>NWP</td>
<td>Numerical Weather Prediction</td>
</tr>
<tr>
<td>OSI</td>
<td>Ocean and Sea Ice</td>
</tr>
<tr>
<td>OWDP</td>
<td>OSCAT Wind Data Processor</td>
</tr>
<tr>
<td>PenWP</td>
<td>Pencil Beam Wind Processor</td>
</tr>
<tr>
<td>QC</td>
<td>Quality Control</td>
</tr>
<tr>
<td>SAF</td>
<td>Satellite Application Facility</td>
</tr>
<tr>
<td>SDP</td>
<td>SeaWinds Data Processor</td>
</tr>
<tr>
<td>SST</td>
<td>Sea Surface Temperature</td>
</tr>
<tr>
<td>WVC</td>
<td>Wind Vector Cell, also called node or cell</td>
</tr>
</tbody>
</table>

Table A.1 List of acronyms.
Appendix B: Development of PenWP

Software code for processing satellite data may become very complex. On the one hand, it consists of code related to the technical details of the satellite and instruments; on the other hand, the code drives complex algorithms to create the geophysical end products. Therefore, the EUMETSAT Satellite Application Facility (SAF) project for Numerical Weather Prediction (NWP) has included some explicit activities aiming at enhancing the modularity, readability and portability of the processing code.

For many years, the KNMI satellite observation research group has been developing processing code to supply Near Real Time (NRT) level 2 surface wind products based on the ERS, SeaWinds, ASCAT and OSCAT scatterometer level 1b Normalized Radar Cross Section data (σ_0). This work is coordinated and supervised by Ad Stoffelen. In the beginning only an adaptation of his ERS code existed. Later Marcos Portabella and Julia Figa added modifications and extensions to improve, e.g., the wind retrieval and quality control algorithms. In 2003 John de Vries finished the first official release of a processor within the NWP SAF. This processor was called the QuikSCAT Data Processor (QDP).

Meanwhile, Jos de Klooe has been updating the code for ERS scatterometer wind processing. For many parts of the process steps (e.g., the BUFR handling and part of the wind retrieval) a large overlap with SeaWinds Data processing coding exists. The KNMI Scatterometer Team is working towards generic NRT scatterometer processing. As a result, a new modular processing code for SeaWinds data was developed within the NWP SAF: the SeaWinds Data Processor (SDP) as successor of QDP. Based on the generic code already available for SeaWinds and ERS processing, a new ASCAT Wind Data Processor (AWDP) and later on an OSCAT Wind Data Processor (OWDP) were developed.

After SeaWinds on QuikSCAT and OSCAT on Oceansat-2 also HSCAT on HY-2A was launched, being the third Ku-band rotating pencil beam scatterometer in space. In 2014 RapidScat, built on the heritage of SeaWinds, was installed on the International Space Station. More instruments with similar configuration are planned for the (near) future. This has encouraged us to start the development of a generic wind processor being able to compute wind products for all these instruments: the Pencil beam Wind Processor (PenWP). The PenWP software is intended to replace both SDP and OWDP. It is already capable to process SeaWinds, OSCAT, HSCAT and RapidScat data and will be adapted when future instrument data become available.

Many persons contributed (directly or indirectly) to the development of the scatterometer software at KNMI: Hans Bonekamp, Jos de Klooe, Marcos Portabella, Ad Stoffelen, Anton Verhoeft, Jeroen Verspeek, Jur Vogelzang and John de Vries are (in alphabetical order) the most important contributors.
Appendix C: HDF5 library copyright statement

This is the contents of the file called COPYING that is provided with the HDF Group software library and utilities. The text is also on http://www.hdfgroup.org/HDF5/doc/Copyright.html

HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 2006-2009 by The HDF Group.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2006 by the Board of Trustees of the University of Illinois.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including commercial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or materials provided with the distribution.

3. In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that the original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked, but not required, to acknowledge that it was developed by The HDF Group and by the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign and credit the contributors.

5. Neither the name of The HDF Group, the name of the University, nor the name of any Contributor may be used to endorse or promote products derived from this software without specific prior written permission from The HDF Group, the University, or the Contributor, respectively.

DISCLAIMER:
THIS SOFTWARE IS PROVIDED BY THE HDF GROUP AND THE CONTRIBUTORS "AS IS" WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall The HDF Group or the Contributors be liable for any damages suffered by the users arising out of the use of this software, even if advised of the possibility of such damage.
Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois, Fortner Software, Unidata Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip), and Digital Equipment Corporation (DEC).

Portions of HDF5 were developed with support from the University of California, Lawrence Livermore National Laboratory (UC LLNL). The following statement applies to those portions of the product and must be retained in any redistribution of source code, binaries, documentation, and/or accompanying materials:

This work was partially produced at the University of California, Lawrence Livermore National Laboratory (UC LLNL) under contract no. W-7405-ENG-48 (Contract 48) between the U.S. Department of Energy (DOE) and The Regents of the University of California (University) for the operation of UC LLNL.

DISCLAIMER: This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.
