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Abstract

Scatterometer sea-surface wind efvations are being successfully assimilated into Numerical
Weather Prediction (NWP) models. However, theaet of such observations often critically
depends on their quality. In this respecte thuality of the winds retrieved from the new
SeaWinds scatterometer (onboard QuikSCAT) dependke subsatellite @ss-track location. In
particular, the poor azimuth seption or diversity between viembeams) in the nadir region
results in poor quality winds.

The standard wind retrieval procedure cassisf considering the Maximum Likelihood
Estimator (MLE) cost function local minima #® potential (ambiguous) wind solutions that are
used by the Ambiguity Removal (AR) procedure to select the observed wind. In the QuUiIkSCAT
nadir region, where the cost fuimn minima are broad, the usetbe standard procedure results

in arbitrary and inaccurate winds. A schemeichrallows more ambiguous wind solutions when

the retrieval results in broad cost function minima, i.e., a multiple solution scheme (MSS), is
proposed as alternative to tharsdard procedure. The probabildfevery ambiguous solution of
being the “true” wind is empirically derived and used in the AR procedure to make the scheme
flexible enough to accept many wind solutions. The AR scheme uses National Centre for
Environmental Prediction (NCER¥-hour forecasts as NWP background.

A comparison between the standard wind retrieval and the MSS procedures at 100-km resolution
is then performed, using the European @eifior Medium-range Weather Forecast (ECMWF)
First Guess at Appropriate Time (FGAT) modehds for validation. The MSS turns out to be
more in agreement with ECMWF than the standanatedure, especially atdir. Moreover, it
shows more spatially consistent and re@lisvinds by more effectively exploiting the
information content of the observations. In fa8R results in winds with generally higher a
priori probability and generally good agreembstween a priori probability and AR selection.
As such, the MSS concept is potentially benafiéor QuikSCAT data assimilation purposes in
NWP. Finally, the lack of an effective Quali§ontrol (QC) at 100-knmesolution, essential for
assimilation purposes, is discussed and reévenethods are recommended for further
investigation.
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1 Introduction

The forecast of extreme weather events isahwtys satisfactory, while their consequences can
have large human and economic impact. &intany weather disturbances develop over the
oceans, sea surface wind observaican help to improve thegqaliction of the intensity and
position of such disturbances.

Nowcasting, short-range forecasting and nuoanveather prediction (NWP) assimilation can
benefit from the sea surface wind observations. In this res@ieffelen and Anderson (1997a)

show that spaceborne scatterometers, whichable to provide accurate winds over the ocean
surface, have a beneficial impact on analyses and short-range forecast, mainly due to
improvements on the sub-synoptic scales. Moredtierimpact of assimilating sea surface winds

into NWP models significantlydepends on the data covera@offelen and Van Beukering

(1997) andJndén et al. (1997) show a much more positivepact by duplicating the sea surface
wind data coverage.

The SeaWinds instrument onboard QuikSCAT Istglaunched in June 19, 1999) is a conical-
scanning pencil-beam scatterometer. It uses amgtatmeter dish antenna with two spot beams,
an H-pol beam and a V-pol beam at incidenaglesnof 46° and 54° respectively, that sweep in a
circular pattern. The antenna radiates mi@eavpulses at a frequgnof 13.4 GHz (Ku-Band)
across a 1800-km-wide swath centered on the sgaEtearadir subtrack, making approximately
1.1 million 25-km ocean surface wind vector measents and coverin§0% of the Earth’s
surface every day.

The SeaWinds swath is divided into equidistross-track WVCs or nodes numbered from left
to right when looking along the satellite’s prgp#ion direction. The nomah WVC size is 25 km

x 25 km, and all backscatter measurements cehtera WVC are used to derive the WVC wind
solutions. Due to the conicatanning, a WVC is generally viewathen looking forward (fore)
and a second time when looking aft. As suchtaipour measurement classes (called “beam”
here) emerge: H-pol fore, H-pol aft, V-pol foemd V-pol aft, in each WVC. Due to the smaller
swath (1400 km) viewed in H-pol at 46° degraesdence, the outer swath WVCs have only V-
pol fore and aft backscatter measurements. rhore detailed information on the QuikSCAT
instrument and data we refer§pencer et al. (1997),JPL (2001), and_eidner et al. (2000).

In comparison with previous scatterometers, $eaWinds system has a much higher coverage
and, as such, is potentially very useful for dataimilation in NWP models. However, because
of its rotating mechanism, the SeaWinds antelo@@m geometry varieacross the subsatellite
track. As reported bjPortabella and Soffelen (2002a) andiles et al. (2002), the quality of the
retrieved winds depends on the azimuth arsglparation among beams (or views), i.e. on the
azimuth diversity. The poorer the azimuth diversihe lower the qualitpf the retrieved winds

is. In particular, the nadir region of the QUIK&T swath has poor azimuth diversity, i.e. inner
and outer views are close in azimutiddore and aft views are close to 1&part. This region
represents a considerable portafrthe QuikSCAT inner swath, i.e. about 500 km. Therefore, in
order to successfully assimilate QuikSCAT wimat® NWP models, additional effort is required
to improve the wind retrieval in the nadir region.
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Portabella and Soffelen (2002a) extensively examined the wind retrieval problem in the
QuikSCAT nadir region, determining why theustlard wind retrieval procedure produces such
poor quality winds and proposing an alternativethod, i.e. the multiple solution scheme (MSS),

to overcome such problem. In this introduction (see following subsections) we extensively
reproduce the work performed Pyrtabella and Soffelen (2002a). In chapter 2, we compare the
standard wind retrieval procedure with the M&3.00-km resolution, using the European Centre
for Medium-range Weather Forecast (ECMWFpdal winds as reference. In chapter 3 we
address the problem of quality control (QC)180-km. Finally, in chaer 4, the summary and
conclusions are presented.

1.1 Cost function

In remote sensing, the relationship between @lbservation or set of observations and one or
more geophysical state variables is generapresented with the following equation:

y =K, (x) (1)

wherey is the vector of observations,s the vector of state variables tlyalepends on, and the
operatorK, is the so-called forward model, which relates the state variables to the observations;
the subscriph reminds us that it might be non-line@he process of deriving the best estimate of

x for a giveny, allowing for observation errors, is calledersion. There are several approaches
for inverting remotely sensed variables, inghgd Bayes’ theorem, exact algebraic solutions,
relaxation, least squares estimatiomntrated eigenvalue expansions, @€odgers, 2000). The

most general approach to the problem is theeBay approach. This approach is also used in
scatterometry, where the inversion process is highly non-linear.

Several optimization techniques, et depend on the desired statial objective, can be applied
when using the Bayesian approach, including maximum likelihood, maximum posterior
probability, minimum variance, minimum measuwent error, etc. The maximum likelihood
estimation is the most commonly used technique to invert winds in scatteroRietspr{, 1989;
Soffelen, 1998).

For SeaWinds, the Maximum Likelihood Estimator (MLE) is defined as [adopted JRbm
(2001)]:

MLE :ii(ar?ﬂ _Jg)z

2
N = kplog @

where N is the number of measurements; ° is the backscatter measuremedg,® is the
backscatter simulated throughetfseophysical Model Function §@-) for different wind speed
and direction trial values, anp(os 9 is the measurement error variance (noise). Strictly
speaking, when assuming Gaussian errors, a befi{p(cg)) should be added to the right-hand

side of equation 2 but this teria not significant and, asuch, is not used. [Note: th€p is
usually taken proptional to eitheragy, ° or o  the latter is chosen to derive winds at 25-km
resolution, following the MLE definition for QkSCAT given by the dePropulsion Laboratory
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(JPL). On the other hand, recent experimenge (8ppendix A) seem to indicate that, for
SeaWinds, &p proportional togy °is slightly better than &p proportional togy ° at 100-km
resolution (see equation 2); as such, the former is used in chapter 2.]

According to the Bayes’ theorem, the MLE valepresents the probabilitf a trial wind vector
(solution) being the “true” wind. The SeaWindptimization technique consists of looking for
the minima of equation 2, which represent thelsolutions with maxinm probability of being
the “true” wind. Since it is computationally expamsto search for minimum MLE in the entire
wind domain, the following procedure is usually applied in scatterometry:

» For a particular wind direction, the minimuMLE is searched as a function of wind
speed, which, in contrast with wind éation, behaves quasi-linearly and a single
well-determined minimum is usually found. &search is generally performed at the
speed step size given by a look-up-¢afllUT) (0.2 m/s for QuUikSCAT).

* The same operation is repeated for every wind direction, at the step size given by the
LUT (2.5° for QuikSCAT). The resulting minimum MLE as a function of wind
direction is referred to as MLE cost function.

In the standard wind retrieval procedure, theBVcost function is searched for minima. There
are typically up to four minima, which are @l ambiguous wind solutions. A spatial filter or
ambiguity removal (AR) scheme is then uskd select the observed wind field from the
ambiguous wind field.

1.1.1 Wind retrieval skill

The MLE (see equation 2) can be interpreted aseasure of the distance between a set,cf
values and the solutiogs ° set lying on the GMF surface in a transformed measurement space
where each axis of the memsment space is scaled Kp(os 9 (Stoffelen and Anderson, 1997b).

The shape of the MLE cost function is determined byathenodulation of any view and the
relative geometry among views. By using tNHEE cost function minima in the retrieval
(standard procedure), the shape of the cost fumetill determine the skill of the wind retrieval.

Figure 1 shows an example of the MLE casndtion for QuikSCAT as a function of wind
direction. The diamond symbols indicate the ajubus wind solutions detected by the inversion
procedure. The shape of the minima determthesaccuracy of the wincktrieval. The broader

the minima, the less accurate the retrieved winds are, since we are ignoring the neighbouring
wind solutions to the minima, which are of compé&eglrobability of being the “true” wind, i.e.,
comparable MLE value. The depths of the minirektive to each other determine in this case

the likelihood of each ambiguous solution of betng “true” wind and therefore the ambiguity or
uncertainty of the system. Theoskr the depth of the secondary minima to that of the primary
(deepest) minimum and the larger the numbefdekp) minima, the more ambiguous the wind
retrieval is.

The modulation of the cost function (differermetween maximum and minimum in Figure 1) is
also important in terms of wi retrieval accuracy. It shows hawlikely the lowest likelihood
points of the cost function ampared to the highest likkbod points. For example, the low
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GMF modulation at low winds resslin a low cost function moddlan. In this case, the wind
direction solutions coming out tiie inversion are not so meaninganymore, since the standard
procedure is ignoring many cost function poimts comparable probalty to that of the
ambiguous solutions. As such, a low coshdtiion modulation corresponds to a low wind
direction skilf".

The MLE cost function is an output of the invers and as such is reflecting the inherent
inversion problems. Using the minima of tNLE cost function as the only ambiguous wind
solutions can lead to poor quality retrievals. Aswik see in section 1.3, if we properly use the
information on accuracy and ambiguity derivedrirthe MLE cost function (inversion), the wind

retrieval may improve significantly.

MLE along line of minima

80

60

MLE

40

N
o

o
O‘\\\

| | | |
60 120 180 240 300 360

Wind Direction (degrees)

Figure 1 Example of MLE cost function for QUikSCAT node number 33. The diamond symbols indicate the locations
of the minima found by the inversion procedure.

1.1.2 QuikSCAT example

As already mentioned, the wind retrieval peniance decreases in certain regions of the
QuikSCAT swath. This is an infent problem of the QuikSCATversion, which is reflected in
the shape of the MLE cost function.

The example shown in Figure 1 corresponds to mageber 33. This WVC is inside the nadir
region (WVC numbers 29-48), cioso the sweet region (WVC mibers 9-28 and 49-68). As we
approach the nadir sub-track of the satel{i®des 38 and 39) and the azimuth diversity
decreases, the MLE cost function minima témdecome broader and therefore wind retrieval
less accurate. In contrast, when approachingwreet region and the azimuth diversity increases,
the minima become steeper and consequeah#ywind retrieval more accurate. In the outer
region (WVC numbers 1-8 and 69-76), the wwettor is not anymer overdetermined since

! Wind direction information is meteorologically less meaningful for low winds. We generally find that the wind
vector error does not depend on wind speed.
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there are only two views. The MLE cost functwiil have most of the timas four minima with
nearly equal and low MLE value3he outer region is them® the most ambiguous of the
QuikSCAT swath. The minima in this region whié steep and therefore as accurate as those in
the sweet swath, except for the nodes at thesedfythe swath, wherthe two outer views are
close to each other (poor azirhugeparation) and therefore bdoaninima in wind direction are
again present.

In order to better illustrate the QuikSCAT inversion problem, we have inverted QuikSCAT
winds, using inversion softwaivailable at the Royal Dutch Nemrological Institute (KNMI),

and performed collocations with ECMWF médénds over a period of 12 hours (more than 7
orbits).

Figure 2 shows the two-dimdnsal histograms of the®'Irank (deepest cost function minimum)
KNMI-retrieved wind solution versus the ECMWINnd for wind speed (left plots) and wind
direction (right plots), and for flerent parts of the swath: swd&bp plots), nadir (middle plots)
and outer (bottom plots) regioridote that the right plots are mputed for ECMWF winds larger
than 4 m/s. This is done to avoid noise in phas, produced by the typical low wind direction
skill at low winds, i.e., for a constant wind vecesror the wind directionreor is increasing with
decreasing wind speed. The ambiguity of theesysis reflected in the quality of thé' tank
solution. In other words, the deeper thitrank in comparison witithe secondary minima, the
higher the likelihood of the corresponding rahkvind to be the “true” wind (higher®Irank
skill), i.e., the lower the ambiguityt is clearly discernible from #hplots that the sweet swath is
the region with the best'rank skill. It has the lowest bias and standard deviation (SD) values
and the highest correlation values of the ergwath in both speed and direction. As expected,
the worst ¥ rank skill corresponds to the outer regichse uncertainty or ambiguity is revealed
in the wind direction contour pts as data accumulation awfagm the main diagonal (seé line
departure in the plots). Iparticular, the typical 18Gambiguity of scatterometer data is shown as
data accumulation along the T8@iagonals. Again, the sweet region (plot b) shows little data
accumulation away from the main danal, mainly located along the T8fiagonals. In the nadir
swath (plot d), the data accumulation away fromiain diagonal is larger and somewhat more
spread in comparison with the sweet swatmotiag a slightly worse ambiguity problem. Note
the large accumulations of data along the°l@i@gonals and elsewhere in the outer swath (plot
f), denoting the significant ambiguitf the system in these regions.

Figure 3 shows the same as in Figure 2 butHferKNMI-retrieved wind solution closest to the
ECMWEF wind. The quality of the closest solutigives an idea of the accuracy of the wind
retrieval. Note that the wind speed and wingkdilon contour lines of both the sweet (top plots)
and the outer swaths (bottom plots) are closthéodiagonal line, denoting high accuracy of the
wind retrieval. However, this is not the case for the nadir swath (middle plots). Moreover, the
bias and SD values are significanidyger than in the rest ¢iie swath, denoting relatively poor
wind retrieval accuracy at nadir.
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Figure 2 Two-dimensional histogram of the 1% rank KNMlI-retrieved wind solution versus ECMWF wind in the
different parts of the swath: the sweet (top plots), the nadir (middle plots) and the outer (bottom plots) regions. The
left plots correspond to wind speed (bins of 0.4 mys) and the right plots to wind direction (bins of 2.59). The latter are
computed for ECMWF winds larger than 4 nvs. N is the number of data; mx and my are the mean values along the x
and y axis, respectively; m(y-x) and s(y-x) are the bias and the standard deviation with respect to the diagonal,
respectively; and cor_xy is the correlation value between the x- and y-axis distributions. The contour lines are in
logarithmic scale: each step is a factor of 2 and the lowest level (outer-most contour line) is at N/8000 data points.
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In summary, as seen in Figures 2 and 3, thetssgg®ns show the bestnd retrieval skill of the
QuikSCAT swath, in terms of ambiguity anccaracy. Although there is a significant ambiguity
problem in the outer swath, its accuracyctsnparable to that of the sweet swaffhe wind
retrieval accuracy in the nadir region is sigantly poorer comparedo the outer and sweet
regions of the QUikSCAT swath and has no predeidescatterometry; as such, special attention
should be given to it.

The QuIkSCAT azimuth diversity smoothly changeth the node number ithe inner swath. In
other words, there is no discontinuity betwees stveet and the nadir regions. As such, it seems
reasonable to consider the sweet swath as wehi®study. Therefore, we focus our research on
improving wind retrieval in the inner swath (sweehadir), giving speciahttention to the nadir
region. However, this does not mean thatrtte¢hodology applied for the inner swath is not valid
for the outer swath. In principle, the results fridms study are applicable to the outer swath as
well.

1.2 Standard procedure

The scatterometer wind retrieval procedure cdmsi$ inversion and AR. In this section, we
describe the standard inversion + Afethodology used in scatterometry.

1.2.1 Inversion

The MLE-based inversion has already been dised in section 1.1. The standard procedure
gives up to four ambiguous md solutions, corresponding to the cost function minima. In the
process of deriving such minima, several parareaetan be tuned to pnove the inversion in
terms of ambiguity and qualityAn example on how to perform a comprehensive inversion
tuning, in this case for QUikSCAT, can be foundPortabella and Soffelen (2002a). The tuning,
although improving the overall wind retrieval skiflpes not solve any of the already discussed
inherent inversion problems.

As an interface between the inversion and the Aftaral step in scatterometry is to convert the
MLE into a solution probability. According tBayes theorem and the formulation of the MLE
explained in section 1.1, the probability ofifgethe “true” wind given a set of scatterometer
observations is related by defioiti to the MLE in the following way:

-MLE/2
e

p(v| o) :% , 3)

! Note that a feature of the closest is that the more solutions are available, the better the apparent quality. However, it
is clear that quality degrades with the number of solutibhe outer swath results aretbfore too optimistic, since

the outer swath represents more solutions (typically thar) the rest of the swath (on average, between two and

three).
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where v represents the “true” wind and® the set of backscatter measurements, lansl a
normalization factor. The theoreticalationship is therefore an exponential. In other words, as
the MLE, which represents the misfit of theeasurements with the solution lying on the GMF
surface, increases, the probability of that paléic solution being the “true” wind decreases
exponentially. In reality, some of the contrilms to the observatioerror are not properly
accounted for (seBortabella, 2002) and, as such, the shapetioé exponential may differ from
the theory. A comprehensive characterizatiothefsolution probability for QuikSCAT, based on
the empirical methodology described Sigffelen et al. (2000), follows.

Empirical solution probability

* Instead of the MLE, we use a normaliz&(LE or normalized residual (Rn) used by
Portabella and Soffelen (2001) for QuikSCAT quality cdrol (QC) purposes to avoid the
already mentioned problem in the measuremeige estimation, such that equation 3 is re-
written as:

1 _
p(v|o®) = Pk ! (4)
wherek’ is again a normalization factor, ahds the parameter that we want to empirically

derive. Further details on how the Rn is computed in this case can be fdeortalvella and
Soffelen (2002a).

* In order to empirically derive equation 4, we can ignore the a priori knowledge on the
exponential behavior of the probability, andkaahe following assumption: There exists a
function ps(x) such that, if we have set of inversion solutiong with normalized residual
Rn;, then the probability that ranks the one closest to the true wind, denotegdjyis given

by

P(s=j|Rn,iO{1LN}) :Nps(ii)

Z ps(Rni)

(5)

* To determing(x), we concentrate first on only thosases which have exactly two solutions.
We process about 2.5 days of QuikSCAT BU#&Ra and we collocate them with ECMWF
winds. The closest solution to the ECMWF wiisdused as the “selext” wind. Therefore,
we can construct a two-dimensional histogrsimwing the relative probability of selecting
the F'rank (or the % rank), as a function d&n; andRn,. But according to our assumption,
by applying equation 5 witN=2, we find that the probability of selecting thérank is given

by

ps(Rnl)
p.(Rn) + p,(Rn,)

P(s=1|Rn,Rn,) = ={1+ p,(Rn,)/ p,(Rn,)} ™ (6)

» Therefore, by re-arranging equation 6, the thmensional histogram gives an estimate of
ps(Rnz)/ ps(Rny) for every combination oRn, andRn;. Figure 4a shows such experimentally
determined ratios as a functionkf; - Rn,, for several values d&®n;. Although forRn; = 2.5
the ratio is somewhat noisy, it is discernitblat the ratio is a fairljnvariant function oRn; -
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Rn;. SinceRn; is constant and therefog(Rn;) is also a constant, this plot is actually
showing the shape @g(x).

* As we know from equation 4, the shapepdk) is exponential and therefore we just have to
fit the exponential to the experimenfainction of Figureda by adjusting thé parameter.
Figure 4b shows the best fit to Figure 4ajchiis represented ke following function:

p(x) =™ (7)
wherex is representing thien.

In order to check whether the assumption is correct angittjeve found can be generalized for
any number of solutions and not only for twee use the probabilitjunction to predict how
often a certain solutiorank corresponds to thértie” solution for a varying number of solutions
and varying distributions dRn; (remember that we have used only a few con®anvalues to
fit the distributions of Figure 4a).

Tables 1 and 2 compare the preeitdistributions ovethe different ranks with the “observed”
distributions (using the closestEBHCMWF) in the sweet and thediaswaths respectively, for the
set of about 2.5 days of collocated (BRKAT-ECMWF data. The number of solutions
corresponds to the number of minima in theBvicost function and the solution ranking goes
from the deepest to the shallest cost function minimum iascending order. The first row
corresponds to the number of dateatified by numbeof solutions. As shown, when comparing
the left side to the right side of the columitise correspondence is remarkable. Therefore, we

a) b)

,‘5 T T T T T T T T T ,‘5

Rn —Rn
2 1

Figure 4 Plot a shows the ratio of the number of realizations of Rn, and the number of realizations of Rnl as a
function of Rn,— Rny, and for values of Rn;=0.1 (solid), Rn;=1.1 (dashed), and Rn;=2.5 (dotted). Plot b shows the
single exponential fit to the curves of plot a.
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conclude that the assumption is correct anddfaation 7 can be used to determine the solution
probability.

Table 1 Predicted / observed distribaiis at 25-km (sweet swath).

2 Solutions| 3 Solutions| 4 Solutions| All Solutions

Number of Datg 331666 233477 317373 882516
Rank 1 91/90 82/82 77179 84 /84
Rank 2 9/10 15/15 18/17 14714
Rank 3 - 3/3 4/3 212
Rank 4 - - 1/1 0/0

Table 2 Predicted / observed distribotis at 25-km (nadir swath).

2 Solutions| 3 Solutions| 4 Solutions| All Solutions

Number of Datd 262753 172506 45638 480897
Rank 1 82/80 79179 65/ 66 79179
Rank 2 18/20 17717 20/19 18/18
Rank 3 - 4/4 8/8 212
Rank 4 - - 717 1/1

1.2.2 Ambiguity removal

In order to understand the importance of thieitemn probability for AR, a brief description of
AR follows. The AR is the press of selecting a uniquénd vector out of a set of ambiguous
wind vectors at each WVC. The AR is notngauted in a WVC-by-WVC basis but over many
neighbouring WVCs at once. There are two Adthniques, which are commonly used in
scatterometry: spatial filters, e.g., medidief for QUIkSCAT, and variational analysis.
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Median filter

The median of a group of data values is thdtievdor which there are equal numbers of data
values of greater and lesser magnitude. This conventional definition of the median can only be
applied to non-circular (i.e., liae and scalar) data in which the ordering of the values is obvious.
For circular data or vector data such as scattel@mends, an alternative definition of median is
used. The median of a set of data x(1), X(2x(N) is defined as the number x(M) which
minimizes:

Z|X(|\/|)—X(i)| (8)

wherel<M < N.

The medians of circular and vector data caladaising the alternative definition have similar
characteristics to the median of non-circula&adae., extreme and isolated data are ignored.

The median filter is used by JPL for QuikSCAT AR, 2001) and works as follows:

» The wind field over an entire revaion of scatterometer data istialised with the help of an
NWP model. For each particular WVC, th& tank or the 2 rank wind vector solution,
whichever is closer to the NWP field, is saéd as first guess wind. The number of ranked

* The wind vectors in a 7 x 7 filter window determine a median vector for the center WVC. The
median vector is compared with the ambiguities in that WVC, and the closest ambiguity to
the median is selected for use in the nexatten. The entire revolution is filtered in that
way. The process continues until it converges, i.e., when no new replacements of vectors have
been made.

The MLE (or probability) information is implicitlysed in the median filter. The probability can
play an important role in the selection of l@guities used in the initialization and filtering
processes (this is further discusgedection 1.3). However, it is never explicitly used in this AR
technique.

Variational analysis

The variational analysis is a commonly used technique for data assimilation into NWP models. It
consists of combining the background fieldW{R) with the observationsassuming that both
sources of information contain errors and theseveell characterized, to get an analysis field,
which is spatially consistent and meteorologicéifanced. This analysis field can then be used
for scatterometer AR, that is, to select the eddbmbiguous wind solution tbe analysis field at

each WVC. At KNMI, a simple 2D (at surface Iéwmly) variational analysis scheme (2D-Var)

has been specifically developed for ARoffelen et al., 2000), which attempts to minimize the
cost function

() =3, + I, ©)
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where J, is the background term anB§™ is the observation term. It uses an incremental
formulation with the control variable of wind increment®,= x— x,, defined on a rectangular

equidistant grid. The control variablg is the background field, which in 2D-Var is a NWP
model forecast. The forecast is also usedras duess making the control variable equal to the
null-vector at the start of the minimization.

The J, is a quadratic term that contains the mseeof the background error covariance matrix. It
penalizes the deviationdm the background field. Th&™ expresses the misfit between the
ambiguous wind vector solutions and the tooinvariable at each observation point. The
contribution of the wind solutions in each obsgion point is weighted by the solution
probability in the following way (adopted froftoffelen and Anderson, 1997a; Soffelen et al.,
2000):

Yo
scat — 1
I =| (10)

>k

i=1

where N is the number of solutions dfds:

Ki:[“_”ij +(V_Vij ~2InP (11)
& &

u \

whereu andv are the wind component control variablasandyv;, the wind solution in zonal
and meridional components, respectivetyand g, the corresponding observation errors; &d
the solution probability.

In order to solve the minimization problem, anjugate gradients method is used, which also
requires the gradient of the cdshction. After convergence, themtrol variable vector of wind
increments is added to the background fieldltain the wind analysis. The analyzed wind field
is then used for AR, as already discussed.

The solution probability is used explicitly in this AR technique (Seffelen et al., 2000). It
plays a very important role in the minimizaii and therefore must be characterized in a
comprehensive way. In this respect, the eroglly derived solution probability, shown in the
previous section, is essential Bosuccessful use of a variational AR.

1.2.3 Relevance of spatial resolution

KNMI has a NRT 100-km resolution QuikSCAT md product, which includes inversion, QC
and ambiguity removaRoffelen et al. (2000) show that the 25-kQuikSCAT winds are often

too noisy, especially at low windmsd in the nadir region. Theysal show that the averaging of

the radar backscatter information, and themefthe reduction of the spatial resolution,
significantly reduces the noise of the inverted wiadd increases the rank-1 probability (see also
Portabella et al., 2001). For applications such as mesoscale NWP data assimilation, where the
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effective analysis resolution &t least 100-200 km, the use of reduced resolution QuikSCAT
winds is effective. In this respect, sevekigh-resolution Limited Area Model (HIRLAM)
project countries and ECMWFenow operationally using a reckd resolution QuikSCAT wind
processing in data assimilation. As suehcomparison between the 25-km and the 100-km
inversions seems appropriate at this stagel e@m in turn help to better understand the
QuikSCAT inversion problem.

Probability at 100-km

We can perform this comparison in terms of pinebability, since it is @loser stage to AR (see
section 1.2.1) than the MLE. Therefore, westficompute the probability for the 100-km product,
following the same methodology as foet®5-km product (see section 1.2.1):

* TheRnis computed at 100-km resolution (S tabella and Soffelen, 2002a).

* The shape opyx) is found by processing about 10 dafsQuikSCAT data and shown in
Figure 5 for the same valuesRf; as used in Figure 4a. The curves are noisier than in Figure
4a, since the number of data used in the Ki0two-dimensional histogram is about four
times smaller than that used in the 25-kimstogram (one 100-km WVC corresponds to
sixteen 25-km WVCs). Despite thimise, note that the curve lBigure 4b fit also fairly well
the curves of Figure 5. Therefore, we alse equation 7 to compute the solution probability
at 100-km, whera is in this case thBn at 100-km resolution.

1.5

p(Rn,)/p(Rn.)

Rn —Rn
2 1

Figure 5 Same as Figure 4a but for the 100-km resolution Rn
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« Similar to tables 1 and 2, the results for teeification of the 100-km probability are shown
in tables 3 and 4, respeatly. The correspondence betweaée predicted and the observed
distributions is also remarkable, confirmitige validity of equation 7 for computing 100-km
probability.

Comparison

By comparing tables 1 and 2 to tables 3 anadpectively, one can clearsee the substantially
higher £' rank skill of the 100-km product, dermugi a smaller ambiguity problem (see section
1.1.2), compared to the 25-km product (note hiigher percentages of the rank-1 row in the 100-
km tables in comparison with the 25-km tables).

In order to compare both productge have transformed the MLE stdunction into a probability
cost function by using equation \Re invert the already mentiotheets of BUFR data (2.5 days
for the 25-km and 10 days for the 100-km) amek the probability cost function information.
[Note that discussing about peaks or maxima enptfobability cost function is equivalent to the
discussion about minima in thdLE cost function]. Figure 6hows the statistical results of
looking at several characteits of the cost function.

Table 3 Predicted / observed distribatis at 100-km (sweet swath).

2 Solutions| 3 Solutions| 4 Solutions| All Solutions
Number of Datg 53753 67947 73269 194969
Rank 1 97 /96 94 /93 92/92 94 /93
Rank 2 3/4 5/5 717 5/6
Rank 3 - 1/2 1/1 1/1
Rank 4 - - 0/0 0/0

Table 4 Predicted / observed distribatis at 100-km (nadir swath).

2 Solutions| 3 Solutions| 4 Solutions| All Solutions

Number of Datg 66618 40478 9344 116440
Rank 1 83/83 93/93 78174 86 /86
Rank 2 17717 6/6 16/19 13/13
Rank 3 - 1/1 3/4 1/1
Rank 4 - - 3/3 0/0
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The top plots of Figure 6 show the histogramhghe difference between the maximum (Pmax)
and the minimum (Pmin) probabilities for the 25-km (plot a) and the 100-km (plot b) products.
The distributions of Figure 6b are much broadwet shifted towards higher probability difference
values than the distributions of Figure 6analeng a better probability modulation and therefore
less accuracy (see section 1.1.1) of the 100-kmdymt. Comparing the sweet (solid lines) with
the nadir (dotted lines), we see a better pribamodulation for the former in both products.

The middle plots of Figure 6hew the histograms of the numbefr cost function points with
probability larger than 10% for the 25-km (plotac)d the 100-km (plot d) products. As discussed
in section 1.1, the cost functiamcomputed at the directiatep size of the GMF LUT (22band
therefore contains 144 points. The fact of hawahdeast one point abovi®% probability is an
indication of a good probability modulationnse it shows how likely these points are with

respect to the remaining cost fulcti points with avexge likelihood oer: 0.7%. In this

sense, notice the larger amounttiaies that the 25-km product cost function does not have any
probability value above 10% compared to the k@0product, showing again a better probability
modulation of the latter. In amilar way, if we compare the ®&t with the nadir swaths, we
notice a larger number of times (the double orehevhere no cost function points were above
10% probability in the kder. However, the fact of having more or less points above 10% does not
necessarily show a better modulation. For examplgeifook at the shape of the distributions in
Figure 6d, we see that the nasdivath distribution is shifted towards a larger number of points
compared to the sweet swath. Since the nadatrs@oes not usually have more than 3 solutions
(look at the number of data with 4 solutionscomparison with the number of data with 2 or 3
solutions in table 4), the relatively large ruen of points above 10%robability could be an
indication of a flat peak, as expected frtns region of the swath (see section 1.1.2).

The bottom plots of Figure 6 show the histograrhthe difference between Pmax and the mean
probability (Pmean) over an interval 812.5 around Pmax for the 25-km (plot e) and the 100-
km (plot f) products. This difference gives amlication of the peak modulation. The larger the
difference, the steeper the maximum (or main pefkhe cost function and therefore the better
the accuracy of retrieved winds is (see sections 1.1.1 and 1.1.2). The larger accumulations of data
at low difference values in the nadir swath t{edd) with respect to the sweet (solid) swath
confirms the existence of flattgpeaks in the former as discussed above. Moreover, this is not
only valid for the 100-km product but also foetB5-km product. The reason why we could not
infer flat peaks in the 25-km product from the maglot distributions ishat the flat peaks are
below the 10% probability level imposed in suglots. However, as we see from the larger
accumulation of data at low Pmax-Pmean valudsgare 6e with respect to Figure 6f, the peaks
are much flatter (lower peak modulatiat)25-km than at 100-km resolution.

Therefore, we conclude that, for QuikSCAflie 100-km product is less ambiguous and more
accurate than the 25-km product and therefore mitable for wind retrieval purposes than the
25-km product. In this study, we Wherefore use the 100-km product.
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Figure 6 Histograms of the difference between the maximum (Pmax) and the minimum (Pmin) probabilities (top
plots), the number of cost function points with probability larger than 10% (middle plots), and the difference between
Pmax and the mean probability (Pmean) over an interval of #12.5 °around Pmax (bottom plots), for the sweet (solid
lines) and the nadir (dotted lines) regions and for the 25-km (left plots) and the 100-km (right plots) products.
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1.3 Multiple solution scheme

So far, we have extensively examined the isv@ problem for QuikSCAT and determined the
relation between the relative probability af solution and the MLE in order to prepare
QuikSCAT ambiguous solutions for AR. We have teat that in the nadir swath, the accuracy of
the inverted winds is low compared to theestvswath, due to low peak modulation in the
probability cost function. For low winds, the acacy is also low due to the low cost function
modulation. The worst scenaricetiefore occurs for low winds e nadir swath, where the cost
function modulation is rather flat.

The number of solutions in the nadir swath isalen than in the sweet swath (see the relatively
small amount of data with 3 and 4 solutions comparnld 2 solutions in table 4, in contrast with

table 3). This may be caused by the noise and/or the shape of the cost function, i.e., a cost
function that has well defined and steep probability peaks (or MLE minima) may have a larger
number of peaks than a cost function that has broad peaks. However, it seems contradictory to
provide only few wind solutions to AR when thest function peaks are less well defined, since
these do not represent the full information content of the wind retrieval. Along a broad peak,
there are several wind solutionstvalmost the same relative probability as the peak. However,

by selecting only one (as the inviers is doing), we assign zero probability to the rest of the
points that belong to the broad peak. On therdthad, by selecting all of the points of the broad
peak, we are transferring to AR all retrieved quality information; that is, the inversion could not
find a clear candidate for that particular regiorthe cost function, but rather a few candidates

with comparable probability.

Precedent

At JPL a procedure, based on a multiple solution inversion output (not constrained to four
solutions) in combination with AR, called DIRTIKiles et al., 2002) was developed. It includes

an initialization technique for the mediaiitdr, called the Thresholded Nudging (TN), and a
multiple solution selection scheme as input to tiedian filter, called the Direction Interval
Retrieval (DIR).

The TN allows for more than two ambiguities ie fhitialization (ge section 1.2.2) and works as
follows. The probability of the cost function is normalizedttvthe probability of rank 1, and the
number of ambiguities (up to four) with norlzad probability above 0.2 is used in the
initialization.

The DIR performs AR in the following way. Giventhreshold T (0.8), a set of cost function
points around each of the local maxima (resgltin as many segments as local maxima) is
selected such that the number of points is mingahiand the integral of the cost function over the
interval of such points is T. Then, AR is parhed in the usual manner (except for using the TN
for initialization), and only theegment of points around the seleceabiguity is further used by
the median filter (see section 1.2.2).

! Sileset al. (2002)use the theoretical relation between MLE and pridibahi.e., equation 3, to compute the latter.
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By examining many wind field cases, we concldoa the DIRTH windsire often very smooth
and unrealistic in the nadir swath. Here weniify some possible reasons for this result:

* By applying the median filter only on the segment that was selected in the first place by the
“traditional” AR, the scheme is subject to the accuracy of the latter. That is, if the traditional
AR fails in an area and produces the wrong sohgj all the segments used in that area will
in turn produce a more or less smooth figdobably following some segment extremes,
depending on the segment width) but wrong.

* When using a threshold T of 0.8 to defittee segments, it may well happen that the
remaining cost function points that sum a probability of 0.2 (1-T) contain valuable
information indeed. In particulaif we look at the Pmax - Amdistributions in the nadir
swath for 25-km resolution (Figure 6a), we seeelatively poor probality modulation. In
such region, many cost functigroints with substantial probaity may be left out of the
segment selection. This will in turn dease the quality of the wind retrieval.

The reason for setting such threshold T is to gméwversmoothing. That is, if we use T=1, all
data in the cost function will be used by the mediilger, which in turn willresult in a wind field
inhibited by the NWP reference and the medidterficharacteristics. This is due to a very
important limitation of the median filter AR, whick not explicitly using the relative probability
of each solution, but rather considering all sodutions with identical probability. Despite the
mentioned threshold and as already discussedesidting wind field is 8l substantially smooth

in areas with large solution segments, i.e., rthdir region. Since the median filter does not
ensure meteorologically balancgelds, the retrievé winds are not only oversmoothed but also
unrealistic in some (of such) areas.

Alternative

The 2D-Var AR (see section 1.2.2) explicithges the probability of all ambiguous solutions.
This AR therefore allows thpossibility of using as many dmguous solutions as we desire
without a substantial riskf oversmoothing. Moreover, sinceetlvariational analysis is always
constrained to spatial consistgnend meteorological balance, wan ensure realistic retrieved
winds by using a scheme based on a multiple solution inversion output in combination with such
AR.

Figure 7 shows a QuikSCAT retrieved wind fieldingsthe standard inveixs output (up to four
ambiguous wind solutions) and the 2D-Var AR. le tiadir region, it is elarly discernible that
the retrieved wind field is spatially inconsisteBince the 2D-Var analysis field (not shown) is
spatially consistent, the problem is midstly in the ambiguousolution distribution.

Figure 8a shows the standard ambiguous swiutistribution (MLE cosfunction minima) for
the same case of Figure 7. As we can cleatyia the nadir regiorthe wind solution pattern
shows almost no solutions in the direction o tmean flow. Therefore, even if the 2D-Var
analysis field were of acceptable quality, thex&o way to select a consistent wind field from
such solution pattern.
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Figure 7 QuUikSCAT retrieved wind field using the standard inversion output (cost function minima) and the 2D-Var
AR. The acquisition date is January 15 2002 at 16 hours UTC. The solid lines separate the sweet-l€eft (Ieft side), the
nadir (middle), and the sweet-right (right side) regions of the QUikSCAT swath.

Figure 8b shows the multiple ambiguous solution @uotstrained to four) distribution again for
the same meteorological case as Figures 7 and 8ahwe all the cost function solutions with
probability above a guessed thresfiadfl 2x10”. Notice how often the ambiguous solutions in
the sweet swath are around the cost function mimmahich is in the direction of the mean
flow, denoting little ambiguity (main cost futh@n minimum much deeper than the remaining
minima) in comparison to the nadir swath. Natso that the number of solutions in the nadir
region is large, indicating loweaccuracy (broader minima) ah in the sweet swath. In
comparison with Figure 8a, we are providing moadre information content to the AR using the
multiple solution inversion output. As alreadysdlissed, the 2D-Var uses the information in an
appropriate way (the ambiguowsslutions are weighted by thecomputed prbability) and
therefore, from a theoretical point of view, the multiple solution concept may considerably
improve the resulting analysis field. Moreover, the AR will now result in a spatially consistent
wind field since the multiple solution concept dpesvide solutions aligned with the mean flow
(see solution distribution in the nadir swathFogure 8b). [Note: thelots in Figures 7 and 8
represent quality-controlled points. This issue is discussed more in depth in chapter 3.]

It seems reasonable to test the multiple saluscheme (MSS) against the standard procedure.
Since using all the points of the cost functieith non-zero probability (up to 144) as solution
ambiguities for the 2D-Var AR is computationaélxpensive, we use émentioned probability
thresholds, i.e., I0for the standard procedure and 2%16r the MSS, as a first guess.

! The reason for choosing a different probability threshold in the standard procedure and the MSS is due to the
normalization of the probability; the former is normalized with up to 4 solutions and the latter with up to 144.
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2 Comparison between the standard procedure and the MSS

As discussed in section 1.2.2, the 2D-Varckground term is a NWP forecast field. The
QuikSCAT data products distributed by JPLdahe National Oceanographic and Atmospheric
Administration (NOAA) include collocated Nanal Center for Environmental Prediction
(NCEP) wind information. The latter is used ®R purposes, i.e., as background term. As such,
a different reference should be used to camapthe standard windetrieval and the MSS
procedures. In this study, wse ECMWF winds as reference.

2.1 Statistical results

Three days of QuikSCAT and ECMWEF collocatethds at 100-km resolion are used in the
comparison. Table 5 shows the mean root-rssprare (RMS) of wind vector differences
between ECMWF and three different wind sourcgandard wind retrieval, MSS and NCEP.
Comparing the standard procedure and the M®E, latter shows better performance, i.e.,
agreement with ECMWEF. As expected, the mdjffierence between the two procedures is in the
nadir region, where the RMS difference is more than 0.5 m/s lower for the MSS. In the sweet
swath, the MSS also works bett€his is due in part to an jpnovement at low winds, where low
cost function modulation is expected, and in parthe improvement of thanalysis field, i.e., a
better 2D-Var analysis in nadir is expected tsifiely impact the analysis in the sweet regions.
Indeed, the results (see tablar@jicate better agreement of M&8alysis (compared to standard
analysis) with ECMWEF in both the sweet and the nadir swath.

Table 5 Mean vector RM5(m/s)

Standard MSS NCEP
Swath region procedure
Sweet 2.48 2.23 2.85
Nadir 2.98 2.45 2.96

! The vector RMS is referred to as the 8Mf the wind vectodifference between
ECMWEF and the different wind sources shown in the table.

Both the standard procedure and the MSS spemerally better scores (against ECMWF) than
NCEP (see table 5). This suggests that 2D-Vauccessfully exploiting the observations rather
than to follow the background (i.e., NCEP). sisch, the quality of the background does not
significantly affect the quality of the retrieved winds. This is also true in the nadir region. As
discussed in section 1.3, the MSS provides a largetber of equally likely ambiguous solutions

in the nadir swath, compared to the sweet regitinss resulting in a larger influence of the
background term in 2D-Var. However, the impattNCEP in the nadir is also minor, as seen
from the substantial difference in vector Rid&ween the MSS (2.45 m/s) and NCEP (2.96 m/s).
The observations and the constraints on metegicdl balance and spatial consistency are
therefore the most dominafaictors in the retrieval.
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Table 6 Mean vector RM5(m/s)

| Standard procedure MSS

Swath region (analysis) (analysis)
Sweet 2.14 2.04
Nadir 2.39 2.24

! The vector RMS is referred to as the 8Mf the wind vectodifference between
ECMWEF and the 2D-Var angis of the differentwvind sources shown in the
table.

Figure 9 shows the two-dimensional histogranoisthe selected soluths by the standard
procedure (top plots) and by the MSS (bottootg)lagainst ECMWF winds, for wind speed (left
plots) and wind directiofright plots), in the ndir swath. The MSS shows a slight improvement
in the wind speed accuracy compared to the standard procedure, as denoted by their
corresponding SD values (see left plots). The nmaprovement is in wind direction. It is clear
that the contour lines in Figure @de closer to the diagonal throse of Figure 9b. The better
wind direction accuracy of the MSS is confirmedthe SD scores, where the standard procedure
is more than Zhigher than the MSS. The fact that thain improvement is in wind direction is
an expected result since the MSS leaves essensidiyger wind direction choice to the AR
procedure (i.e., 2D-Var) than the standard pdace. The fact that 0 MSS choice of wind
direction also improves the wind speed scordiates a more consistent selection for MSS.

The overall results (table 5) shdiat the difference in windector accuracy between the nadir

and the sweet regions is 20% for the standaodquture, while only 10% for the MSS. This is
mainly due to the substantial improvement ad@ MSS in wind direction accuracy at nadir. The

MSS clearly reduces noise as compared to the standard procedure, due to the spatial smoothing
constraints, i.e., flow rotation atittle divergence, and the improvegt®d' (equation 10). We now

further investigate the effect of

MSS probabilistic behavior

A way to test the consistency of the MSS is/éoify the a priori probabilities of the solutions.
Figure 10a shows how often a dan with a particular probaliiy value is selected (diamond
symbols) or is closest to NCEP (star symbals)a function of probabilityBoth the x-axis and
the y-axis are in logarithmic scale. As suthe diagonal denotes a consistent probabilistic
behavior, i.e., a solution with probability value?@or example) is expeetl to be “selected” 1%

of the time. The closest solutidarns out to be probabilisticallather inconsistent as shown by
the large discrepancy with the diagonal. Thesemtially means that the MSS systematically
selects the closest solutionyibuld be doing a poor job sincewbuld not correct the differences
between QuikSCAT and NCEP (background) obsergygjems, where thegxist. The selected
solution shows a more consistent probability pattdhan the closest, especially in the most
populated region, i.e., probabilities betweerf Bhid 10 (see solid line in Figure 10b), where
the diamonds clearly follow the diagonal. Thasen for this is that many closest-to-NCEP low-
probability solutions are not selected and high-pbdita solutions are selected instead. This
indicates that in general 2D-Var successfully resolving ther¢gge number of solutions provided
by the MSS, thus confirming the small depermze(of the MSS) on the background discussed at
the beginning of this section.
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Figure 9 Two-dimensional histogram of the selected wind solution by the standard (top plots) and by the MSS
(bottom plots) versus ECMWF wind in the nadir region. The left plots correspond to wind speed (bins of 0.4 m/s) and
the right plots to wind direction (bins of 2.59. The latter are computed for ECMWF winds above 4 mv/s. N is the
number of data; mx and my are the mean values along the x and y axis, respectively; m(y-x) and s(y-x) are the bias
and the standard deviation with respect to the diagonal, respectively; and cor_xy is the correlation value between the
x- and y-axis distributions. The contour lines are in logarithmic scale: each step is a factor of 2 and the lowest level
(outer-most contour line) is at N/800O data points.

A remaining question is what ti with both tails of the distsiition, i.e., probiilities below 10°

and above 187 (see solid line in Figur&0b), where the probabilistic bavior is far from being
consistent. Figure 10b shows the quality of thiadatar symbols) asfanction of probability.
Note that the quality is decreasing (i.e., @asing RMS) as we approach the extremes of the
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distributiort. In particular, below 16, the data are of poor quality (close to 4 m/s RMS),
indicating that the prability threshold of 2x10 initially used by MSSgee section 1.3) may be
increased to improve the qualiof the retrievals. This is a Q@sue, which will be further
discussed in chapter 3.
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Figure 10 (a) Number of times (normalized and in logarithmic scale) that a solution with a particular probability
value is selected (diamond) or closest to NCEP (star) versus probability (logarithmic scale). (b) Normalized
histogram of selected solutions (solid line) and mean RMS of vector difference between the selected solutions and
ECMWF winds (star) versus probability (logarithmic scale).

2.2 Cases

Many meteorological cases were examined in toisiparison. In order to better illustrate the
statistical results of the previous secti® show some of these cases here [Note: some
additional cases are shown in Appendix B].

Figure 11 shows the MSS selected wind fieldtfe same poor-quality case as Figures 7 and 8.
As discussed in section 1.3, dontrast with the standard procedure, the MSS provides solutions
in the direction of the mean flow in the nadiwath (see Figure 8). As such, a spatially more
consistent and realistic wind feeis found when using the MS$his is shown in Figures 7 and
11, especially in the middle of the plot. Awfeinconsistent wind rmows (probably rain
contaminated), which should be quality con&dl(see discussion on QC at 100-km resolution in
chapter 3), are still present though.

! Below probability of 8x16 the number of data is very small (see solid line in Figure 10b) and therefore not
statistically significant, as deted by the noisy RMS values in the left part of Figure 10. This is also true for
probability above 182

A probabilistic approach for SeaWinds datamgstion: an improvement in the nadir region 28



10 m/s

LAT

Figure 11 Same as Figure 7 but for MSSretrieved wind field.
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Figure 12 QuikSCAT retrieved wind field using the standard procedure (a) and the MSS (b). The acquisition date is
February 3 2002 at 2 hours UTC. The solid lines separate the sweet-right (left side), the nadir (middle), and the sweet-
left (right side) regions of the QuikSCAT swath.
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Figure 12 shows another interesting case of how the MSS is improving the quality of the
retrieved wind field in the nadiwith respect to the standard procedure. Note the noisy and
granular wind field over the entire nadir & in Figure 12a. T& MSS (Figure 12b) is
successfully filtering this noise, kaapg at the same time the dynamical information of this case
(intensity and location dhe low-pressure system are the same in both plots).

Figure 13 shows a low wind speed case. Again, the standard wind field (Figure 13a) shows a
noisy pattern in the nadir swath, whichsisccessfully filtered by the MSS (Figure 13b). The
a) b)
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Figure 13 QuikSCAT retrieved wind field using the standard procedure (a) and the MSS (b), and ECMWF wind field
(c). The acquisition date is February 3 2002 at 7 hours UTC. The solid lines separate the sweet-right (left side), the
nadir (middle), and the sweet-left (right side) regions of the QUikSCAT swath.

A probabilistic approach for SeaWinds datamgstion: an improvement in the nadir region 30



presence of a low-pressure system is bettprcte by the MSS. Moreover, the standard wind
field is also somewhat noisy in the sweet swathmay be expected from the low cost function
modulation at low winds (see section 1.3). #t®own in Figure 13, the MSS is successfully
filtering the noise in the sweet swath as well.

Figure 13c shows the ECMWEF wind field. Bothketmtensity and location of the low-pressure
system are in disagreement witle observations. The assimilationeoivell-defined and spatially
consistent wind field such as the MSS could help very much to improve ECMWF forecast.
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3 Need for a Quality control at 100 km resolution

An important aspect of the 100-km product usethis study, which needs to be examined, is the
QC. Up to now, the 100-km product is usitig MLE-based QC at 25-km resolution (KNMI
QC) developed byortabella and Soffelen (2001) in the following wayif there is sufficient
information on the 100-km WVC after QC (at lehsif of the 25-km W\Cs within the 100-km
WVC), the wind retrieval is performed.

Problems using 25-km QC in 100-km WVC

The problem of using a 25-km QC procedurel@®-km WVCs is illustrated in Figure 8 (see
section 1.3). Figure 8b shows the effects of using the 25-km QC recommen@edag |a and
Soffelen (2002b), i.e., KNMI Q& + JPL rain flag in the nadir and only KNMI QC in sweet
regions, in comparison with Figa8a, where only the KNMI QC has been applied. On the one
hand, as reported byortabella and Soffelen (2002b), the JPL rain flag is rejecting a
considerable amount of consistent winds, as seémeifNorthern part (nadir region) of the wind
flow (see WVCs with consistent wind solutionsHigure 8a removed in gre 8b). On the other
hand, the 25-km QC (using JPL rain flag)able to reject severalVVCs of poor quality,
probably rain contaminated (see the nadir regMWiCs with inconsistet solution pattern, both

in speed and direction, in th@wer half of Figure 8a, remouden Figure 8b). These poor-quality
WVCs show zero probability in thdirection of the flow (not shom) and therefore it is of great
importance to identify these cases and reject them, regardless of the solution scheme, i.e., the
standard procedure or the MSS, we use. Howewen if the 25-km QC iable to remove most

of the poor-quality WVCs, a few of them stiémain in Figure 8b (notice the absence of
solutions aligned with the mean flow in a few nadir WVCs).

Alternatives

Using the background error spatstructure functions, large stirepancies between the wind
solutions provided by the MLE inversion and thalgsis (i.e., output fronvariational AR) can

be interpreted as poor-quality retrieved solutions. After a comprehensive validation, a threshold,
which relates these discrepancies to the qualitth@fobservations, can be set. This gross error
check is the so-called variational QC. The incstesit nadir winds could therefore be rejected
using this QC. Moreover, in contrast with the JPL rain flag, it would generally keep the consistent
wind flow. However, the rejectionf too many discrepweies with the analys could lead to a
retrieved field too close to the background andswh, not useful in data assimilation, i.e., the

! The KNMI QC uses the normalized MLE (Rn) information at 25-km resolution to filter poor quality data, i.e. a Rn
threshold, which maximizes tlgmod quality acceptance and the pqoality rejection, is set.

% The rain flag developed by JPL (deeddleston and Stiles, 2000) looks for the probability of encountering a
columnar rain rate that is greater than 2km*mm/hr. This probability value is read directly from a table based on
several input parameters including average brightness temperature (both H-pol and V-pol), normalized iater-view
difference, wind speed, wind direatioelative to along track, and a norimatl MLE. The space spanned by these
parameters can detect whether the sefafalues used in wind retrieval is affected by rain.

Chapter 3. Need for a Quality control at 100-km resolution 33



impact of assimilating observations that avell in agreement with the NWP background is
expected to be negligible. Comgntly, an extensive testing igjtéred prior to using such QC.

As discussed in section 2.1, the MSS selectedisniiwith low probability values, i.e., below
10*, are of poor quality (see Figu 10b). As such, a more sghtforward QC (prior to
variational analysis) can be set by using a higiebability threshold than the one used by the
MSS (i.e., 2x10). However, by increasing the probabilityreshold, we will also decrease the
number of MSS ambiguous solutions (see secti8h This may lead to some additional noise in
the nadir swath, i.e., the lower the range dbtsons the larger th@umber of cases with no
solution aligned with the “true” dection. Nevertheless, largesdrepancies with the mean flow
will most generally occur when the observatioroispoor quality. Therefore, a variational QC
could then be used to remove such poor quality cases.

Another possibility ido set up a QC procedure for 100-km resolution in a similar way as it was
done for 25 km, i.e., computing Rn (at 100km) and setting an optimal threshold in terms of
maximum good quality acceptance and poor quadijgction. The 100-km QC would be able to
reject the 100-km WVCs that despite they contain good-quality 25-km information (after 25-km
QCQC), they result in poor-qué 100-km winds; for example, a 100-km WVC crossed by a front
line, which still contains enough quality covited 25-km WVCs for wind retrieval.

A way to avoid a decrease in the numbe8S ambiguous solutions and still remove the
WVCs that contain low probability selected sabas is to use an appropriate Rn threshold at
100-km resolution. As it is clear from Figure ide Rn increases with decreasing probabilities of
the selected solution. Since the quality of tfaa is decreasing wittlecreasing probabilities

(Figure 10b), a Rn thresholdowid not only remove poor qualityata (see above discussion on
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Figure 14 Two-dimensional histogram of the Rn versus probability of the selected solution. The total number of
data is 50642. The contour lines are in logarithmic scale (two steps corresponding to a factor of 10 in number
density); the lowest level (outer-most contour line) is at 3 data points.
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100-km Rn) but also the cases with low probabilitested solutions, e.g., a threshold of (let’s
say) 10 would remove almost all caseith (selected) probability below f0and keep most of
the cases with probability above™0

In order to define the best strategy for 100-KhC further investigation of the procedures
discussed in this chapter is required. A corabon of some of these procedures may be more
appropriate.
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4 Summary and Conclusions

In this study, a probabilistic approach is used to improve the QuikSCAT retrievals, especially in
the nadir region, for assimilam purposes into NWP. After thextensive examination of the
scatterometer and, in particular, theiKBCAT inversion problems performed Pyprtabella and

Soffelen (2002a), the standard wind retrieval procedure is compared to a new procedure, the so-
called multiple solution scheme, at 100-km resolution. Prior to the comparison, we summarize the
most relevant issues investigatedRuytabella and Soffelen (2002a):

In scatterometry, the standard wind retrlgmacedure works as follows: the minima of
the MLE cost function, considered as thebaguous wind solutions, are in turn used by
the AR procedure to select the observed windhese circumstances, it is shown how the
shape of the MLE cost function determines the skill of the wind retrieval procedure in
terms of ambiguity and acagy. In particular, for QuikSCAT, the shape gradually
changes with the cross-track location (WV@)jus affecting the retrieval skill of the
different regions of the swath. In the poorraath-diversity nadir region, where the cost
function minima are broad, the accuracytloé retrieved winds isubstantially lower
compared to the rest of the swath. Thendard wind retrieval pcedure is therefore
further investigated.

First, and in order to get a more suitalhterface between thaversion and the AR
schemes, the MLE cost function is transformed into a probability cost function, by
experimentally finding the relation betwedme MLE and the probaldy of the “true”

wind. We use the determined probability ftion to predict how often a certain solution
rank corresponds to the “true” solutiomsing ECMWF winds as reference. The
correspondence is remarkable, indicating that the solution probability function we found
is adequate.

Then, to optimise wind retrieval, the spatial resolution of the retrieved winds is
investigated. The QuUIkSCAT 25-km invertedws are compared to the 100-km winds. It
turns out that the probability function derived for 25-km is also valid for 100-km
resolution. The 100-km product, which lisss noisy by definition, shows both less
ambiguity and more accuracy than the K&&-product and, as such, the former is
recommended for QUIkSCAT use in NWP data assimilation.

The results of the extensive study on the Q@RT inversion problem show that in order

to improve the wind retrieval, notably inetmadir region, more ambiguous wind solutions
need to be provided to the AR. In order to be successful with a multiple solution concept,
it is very important to characterize eaolh the ambiguous wind solutions with its
corresponding probability of beg the “true” wind. Thereforea median filter AR, in
which the probability of each solution is notpécitly used in the final selection, is
inappropriate. We propose to use the multgdéution inversion output in combination
with a variational analysis ARl.e., 2D-Var), the so-called MSS. The variational analysis
AR is not only capable of explicitly usinggiability for the multiple solutions but also
ensures spatial consistency and metegjiobl balance of the retrieved winds.
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The comparison is performed, using NCEP wiag background term for 2D-Var and ECMWF
winds as validation reference. The MSS turns oletonore in agreement with ECMWEF than the
standard procedure, especiadlyy nadir. As expected, the MS@nd direction is substantially
better in nadir, thus validatirthe procedure proposed. Moreover, the MSS selected solution is, in
general, probabilistically consistent, whereasdimsest-to-NCEP solution is rather inconsistent
with the a priori set mbabilities. In other worg] the influence of the background in the retrieved
field is relatively small. As such, 2D-Var iscessfully exploiting the information content of the
observations.

Since the ECMWEF field used for validation is splly smooth, it is at this point difficult to
assess the effect of the backgrounaerestructure functions in obtaining a smooth analysis. In
particular for applications other than NWP, it mail be worthwhile to evalate the effect of the
spatial filtering by validating differentersions of MSS with in-situ data.

The meteorological cases examined clearly shaove spatially consistent and realistic wind

fields for the MSS than for the standard procedespecially at nadir. Moreover, the MSS is not

only acting as a spatial filter, but is also kegpthe wind information (e.g., lows, fronts, etc.)
present in the observations. As such, the multiple solution scheme seems to be more appropriate
for QUIkSCAT data assimilation gawses than the standard scheme.

The MLE-based QC procedure at 25-km resolution (Bedabella and Stoffelen, 2001,
Portabella and Soffelen, 2002b) is not always satisfactory at 18@3 resolution. Alternatives for
such QC are discussed. Similar to the QC akr5a threshold of a 100-km-resolution Rn could
be set to QC 100-km winds. WVCs with low-proialy selected solutionswhich are shown to
be of poor quality, could also be rejected wadtlch Rn threshold. A variational QC is also
pointed out as an effective way of removing &ngconsistencies wittihe analysis field.

In this study, the wind retrieval over the IRBCAT outer regions is not examined. In such
regions, the azimuth separation (diversity) monaalhy decreases as we approach the edges of
the outer swath. As discussedsection 1.3, the MSSlaws a variable numbeof solutions from
inversion, according to the levef determination or azimuthliversity, to be used for AR
purposes. It seems reasonableapply the same methodology (MSS) to the QuikSCAT outer
regions. In such regions, there is a sulighmmbiguity problem sice only two views are
available. However, as discussed in section 1€elatituracy of a two-viesystem is comparable
to a three-view (or more) system provided tlvatuse an effective AR procedure. Moreover, the
variational analysis AR used by the MSS shouldknggnificantly bettefor QuikSCAT than for
two-view systems such as the SASS on Seasag,sim the case of QUECAT, the large (i.e.,
1400-km wide) and almost unique wind informat{@e., low ambiguity) of the inner swath will
be extrapolated to the few nodes of the outgiores, while for SASS, the ambiguity problem is
the same over the entire swath.

Portabella and Soffedlen (2002c) show that the charactéds of the MLE change with the
dimension of the measurement space. Thatthe MLE distributions of two-view (e.g.
QUuikSCAT outer swath) and four-view (e.QuikSCAT inner swath) measurement systems
differ. This means that the MSS is applicatdghe QuikSCAT outer regions, provided that the
solution probability is re-computed using theter-swath MLE information and the observation
term of the AR is tuned to the outer regions. It is also important to say that a comprehensive QC
is needed to successfully derive winds in the outer regiRomgabella (2002) shows that this is

not trivial and therefore further investigationneeded to achieve afffextive QC in the outer
region prior to operationally assimilate the QuikSCAT outer-region winds into NWP.
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Appendix A: MLE norm at 100-km resolution

The MLE, as defined in equation 2 (see section, £dn be computed with different norms; for
example, a measurement error variance (pportional to the GMF simulated backscattef)

or a Kp proportional to the backscatter measurenmyf).(Using a Kp proportional tos® may
cause systematic effects in tlvend direction solutions (se&offelen and Anderson, 1997c). This
may be less true for a Kp proportional dg°® since the MLE norm reains fixed during the
inversion process. However, thecurrence of direatnal biases after inveion depends on the
measurement configuratior¢ffelen and Anderson, 1997c) and there is no easy way to
determine what is the best choice; foclspurpose, tests are usually conducted.

A Kp proportional toos’ is used to compute the MLE at 25-km resolution to mimic the JPL
processing (see equation 2). In this study, however, we compare the standard wind retrieval
procedure with the MSS at 100-km resolutiomc®i the MLE norm has not yet been tested at
low resolution, it is worthwhile to check which Kp, i.e., proportionabtd or proportional to

On°, is best in terms of wind retrieval quality.s&t of three days of collocated ECMWF winds is
used here for reference.

Figure A.1 shows the wind directiatstributions with respect to the satellite flight direction of
ECMWEF winds (solid lines) and QuikSCAT rigtved solutions closest to ECMWF using Kgj
(dotted lines) and Kp(°) (dashed lines). The left and right plots show the wind direction
distributions of the sweet and nadir swath, eesipely. It is clear from the plots that the
QUuIkSCAT retrieved distributions present soumgealistic accumulations (see peaks and troughs
of both dotted and dashed lines) as compared to ECMWF. Both th®’Kphd KpEm°)
distributions are however vergimilar, showing thatnone of them is able to avoid these
unrealistic wind direction accumulations.

This result is in line with the RMS diffemee values between the QuikSCAT (closest to
ECMWF) and ECMWF wind directions. The RMS diéace in wind direction is similar for the
Kp(os®) and KpE,°) distributions, although slightly lower f@he former (see table A.1). On the
other hand, the RMS difference speed is slightly lower for Kpg,°) than for Kp6s°), leading

to an overall comparable accuracy.

TABLEA.1
RMS in Speed (m/s) RMS in Direction() NRMS
Kp(os’)  Kp(©Om®) | Kp(os’) /[ Kp@w’) | Kp(os’) / Kp(Om®)
Sweet swath 1.43/1.39 18.88 /19.08 0.3612/0.3478
Nadir swath 1.57/1.56 22.04/22.39 0.4209/0.3278
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Figure A.1 Wind direction (with respect to the satellite flight direction) histograms of ECMWF winds (solid lines)
and QuikSCAT-retrieved solutions closest to ECMWF using Kp(o: 9) (dotted lines) and Kp(ar, 9 (dashed lines) for the
sweet swath (a) and the nadir swath (b).

Tables A.2 to A.5 show the percentage of “sedtsolutions (closest tRCMWEF) stratified by
number of solutions and rankafee stratification as tables in deant1.2). Tables A.2 and A.3
correspond to the Kp{°) selected solution distributionsf the sweet and nadir swath,
respectively. Tables A.4 and A.5 correspond to theokp(selected solution distributions of the
sweet and nadir swath, respectively.

As discussed in section 1.1.2, th& rank skill shows the ambiguity or uncertainty of the
inversion. In these tables, th& dank skill is shown by the pegntage of selections of rank 1
solution. As we see in the tables, the overdltank skill (last column ofhe tables) is the same
for both Kp@Es®) and Kpf,°) in the entire inner (sweet + dig) swath . However, the number of
solutions given by the Kp(,°) is significantly smaller than the number given by &) in both
the sweet and nadir swath (see riblatively smaller accumulation ofata for 2, 3 and 4 solutions
of Kp(on°) tables compared to Kp{) tables). As such, the K@°) produces a less ambiguous
wind product than the Kp¢°).

Soffelen et al. (2000) computed a more realistic RM8ference in wind direction, called the
normalized RMS (NRMS). In using the usual wificection difference RMS definition, the more
ambiguous solutions are provided by the inversion, the smaller the RMS will be, because the
chance that one of the solutiondlwe close to the wind reference will increase. In the limit of an
infinite amount of observations, the RMS will eviea zero, while the information content of the
set of solutions in reality decreases with arréasing number of solutionsecause there is no a
priori way to say which of the solutions is tberrect one. In order tsolve this problem, they
normalize the RMS with an expected value, Wwhig dependent on the angle separation of the
neighboring solutions of the closest solutionréderence (ECMWF in this case). For more
details, sexoffelen et al. (2000). If we compute the NRMS, we get substantially lower values
for the less ambiguous Kg°) product than for Kpis®) (see table A.1).
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Table A.2 Solution distribution for Kpgs®) (sweet swath).

1 Solution| 2 Solutions| 3 Solutions| 4 Solutions| All Solutions
Number of Datgd 39041 41167 16413 5847 102468
Rank 1 100 89 82 73 91
Rank 2 - 11 12 17 8
Rank 3 - - 5 6 1
Rank 4 - - - 5 0

Table A.3 Solution distributi

on for Kpgs°)

(nadir swath).

1 Solution| 2 Solutions| 3 Solutions| 4 Solutions| All Solutions
Number of Datgd 24269 22032 3665 738 50704
Rank 1 100 71 75 50 85
Rank 2 - 29 15 18 14
Rank 3 - - 9 15 1
Rank 4 - - - 16 0
Table A.4 Solution distribution for Kpgn®) (sweet swath).
1 Solution| 2 Solutions| 3 Solutions| 4 Solutions| All Solutions
Number of Datgd 43650 38950 14957 4915 102472
Rank 1 100 88 82 69 91
Rank 2 - 12 13 18 8
Rank 3 - - 5 7 1
Rank 4 - - - 6 0
Table A.5 Solution distribution for Kp§,®) (nadir swath).
1 Solution| 2 Solutions| 3 Solutions| 4 Solutions| All Solutions
Number of Datd 26348 20946 2545 865 50704
Rank 1 100 71 67 46 85
Rank 2 - 29 21 24 14
Rank 3 - - 12 15 1
Rank 4 - - - 14 0

Appendix A. MLE norm at 100-km resolution
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In summary, the Kuaf,°) provides a less ambiguous product thandgi)(without decreasing the
quality of the wind retrieal. In other wordsin comparison with Kpfs°), Kp(on°) is capable of
removing a significant amount of unrealistanbiguous wind solutions. Consequently, the
Kp(om®) norm will be used for deriving QuikSCAT winds at 100-km resolution.

Finally, it is worthwhile to metion that a fixed (constant) norm has been successfully used to
invert ERS winds $toffelen and Anderson, 1997c). The use of such MLE norm has not yet been
tested for SeaWinds but is recommended to be tested.
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Appendix B: Meteorological cases

Following the discussion on several meteoralafjicases presented in section 2.2, we include
some additional cases in this appendix.

Figure B.1 shows a high-pressure system in the midtithe plot. Note in Figure B.1la that the
standard procedure is successfully retrieving whed field, showing spatially consistent and
realistic winds. Figure B.1b is very similar tagbre B.1a, indicating thavhenever the standard
procedure is successful, the M&#d field does not change mudfioreover, the wind front line
present at the top left part of Figure B.1a soalisible in Figure B.1b, indicating that the MSS
successfully keeps the dynamical informatiof the observations without significantly
oversmoothing the retrieved field.
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Figure B.1 QuikSCAT retrieved wind field using the standard procedure (a) and the MSS (b). The acquisition date is
February 2 2002 at 19 hours UTC. The solid lines separate the sweet-left (left side), the nadir (middle), and the sweet-
right (right side) regions of the QuikSCAT swath.
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Figure B.2 QuUikSCAT retrieved wind field using the standard procedure (a) and the MSS (b). The acquisition date is
February 2 2002 at 12 hours UTC. The solid lines separate the sweet-right (left side), the nadir (middle), and the
sweet-left (right side) regions of the QUIkSCAT swath.

Figure B.2 shows anothsituation where the standard prdoes shows some noisy winds in the
nadir swath (see Figure B.2a). As expected, MES (Figure B.2b) is successfully filtering the
remaining noise (without oversmoothing), improving the quality of the retrieved field compared

with the standard procedure (Figure B.2a).

Figure B.3 presents a high wind speed case. Both the standard procedure and the MSS present
several spatially inconsistent wind arrows in #mnity of the low-pressure system (see bottom
of Figures B.3a and B.3b). However, it is cleattthe low is better resolved by the MSS (Figure
B.3b) than by the standard procedure (Figure BlSaje also that this is an interesting case for
data assimilation into NWP since ECMWEF (Figid&c) does not accurately predict the intensity
and position of the low (see for example, thigedence of wind speed between the top plots and

the bottom plot).
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Figure B.3 QUikSCAT retrieved wind field using the standard procedure (a) and the MSS (b), and ECMWF wind field
(c). The acquisition date is February 2 2002 at 20 hours UTC. The solid lines separate the sweet-left (Ieft side), the
nadir (middle), and the sweet-right (right side) regions of the QUikSCAT swath. The dots represent QC W\/Cs.
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Figure B.4 QuikSCAT retrieved wind field using the standard procedure (a) and the MSS (b), and ECMWF wind field
(c). The acquisition date is February 3 2002 at 2 hours UTC. The solid lines separate the sweet-right (left side), the
nadir (middle), and the sweet-left (right side) regions of the QUikSCAT swath. The dots represent QC WV/Cs.
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Figure B.4 shows a dynamically active case in the Tropics. Note that the low wind speed area
(bottom part of the plots) ibetter resolved by the MSS ¢fire B.4b) than by the standard
procedure (Figure B.4a). The wind flow in thagéars not only more spatially consistent in the
former but also more realistic. Note agdime wind flow difference between ECMWEF (Figure
B.4c) and QuikSCAT (Figures B.4a and B.4b}he high wind speed region (center-top part of

the plots); both the speed and direction ambstantially different,showing once more the
potential positive impact of assimilating QuikSCAT data in mesoscale NWP models.
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