Royal Dutch Meteorological Institute; Ministery Of Infrastructure And The Environment

Publications, presentations and other activities
Azimuthal Anisotropy of the Megaregolith at the Apollo 14 Landing Site
2020
by Y. Nishitsuji (Delft University of Technology), E.N. Ruigrok (KNMI), D. Draganov (Delft University of Technology),

The characterization of the megaregolith on the Moon has been investigated in various ways including analysis of lunar meteorites, remote sensing of mineralogy and gravity, and deriving a seismic velocity profile. In this study, we propose a method for analyzing azimuthal anisotropy of the megaregolith. We call this method deep‐moonquake seismic interferometry applied to S‐wave coda (DMSI‐S). DMSI‐S can turn the records of deep moonquakes into recordings from virtual active sources. The retrieved virtual sources coincide with the station positions, and thus, we obtain virtual zero‐offset (pulse‐echo) measurements. DMSI‐S is applied to seven clusters of deep moonquakes recorded at the Apollo 14 landing site, resulting in virtual zero‐offset measurements at the Apollo station 14. We use the S‐wave recordings retrieved from DMSI‐S to analyze azimuthal anisotropy. We find weak anisotropy at the layer where the megaregolith is assumed to be present. We interpret our result to show that the megaregolith at this site is characterized by a layer (or layers) of impact material, following the Imbrium impact, with internal alignment of the crushed material.

Bibliographic data
Nishitsuji, Y., E.N. Ruigrok and D. Draganov, Azimuthal Anisotropy of the Megaregolith at the Apollo 14 Landing Site
J. Geophys. Res., 2020, 125, doi:https://doi.org/10.1029/2019JE006126.
Abstract (html)  Complete text (html)