Supermodeling by combining imperfect models

SUMO CONTACTS

Dr. Frank M. Selten
Global Climate Division
ROYAL NETHERLANDS METEOROLOGICAL INSTITUTE (KNMI)
Wilhelminalaan 10, 3732 GK, De Bilt, The Netherlands
Tel. +31 30 2206761 Fax. +31 30 2210 407
E-mail: selten@knmi.nl

Dr. Noel S. Keenlyside
Geophysical Institute
UNIVERSITY OF BERGEN (UIB)
Postboks 7800, NO-5020 Bergen
Tel: +47 55 58 20 32
E-mail: Noel.Keenlyside@gfi.uib.no

Prof. Dr. h.c. Jurgen Kurths
Leiter des Forschungsbereiches Transdisziplinare Konzepte und Methoden
POTS DAM-INSTITUT FUR KLI MAFOLGENFORSCHUNG
Telegrafenberg A31 14473 Potsdam
Tel. +49 331 288 2647 Fax: +49 331 288 2600
E-mail: Juergen.Kurths@pik-potsdam.de

Dr. Wim Wiegerinck
Department of Biophysics
Radboud University Nijmegen
Geert Grooteplein-Noord 21, Route 126
6525 EZ Nijmegen, The Netherlands
Tel: +31 24 361 5040 Fax: +31 24 3541435
E-mail: w.wiegerinck@science.ru.nl

Dr. Saso Dzeroski
Dept. of Knowledge Technologies
JOZEF STEFAN INSTITUTE (JSI)
Jamova cesta 39, 1000 Ljubljana, Slovenia
Tel: +386 1 477 3217 Fax: +386 1 477 3315
E-mail: Saso.Dzeroski@ijs.si

Prof. Benjamin Kirtman
Dept. of Meteorology and Physical Oceanography
UNIVERSITY OF MIAMI
Rickenbacker Causeway 4600
33149 Miami, United States
Tel: +305 4214046; Fax:3054214696
E-mail: bkirtman@rsmas.miami.edu

http://www.sumoproject.eu/
Macedonian Academy of Sciences and Arts
Research Center for Energy, Informatics and Materials
Bul. Krste Misirkov 2, P.O.Box 428
1000 Skopje, Republic of Macedonia
Tel.: + 389 2 3235 400; Fax: + 389 2 3235 500
e-mail: sumo@manu.edu.mk

Seventh Framework Programme — THEME [ICT— 2007.8.0]
The SUMO project

The SUMO project is an international effort, funded under Framework Program 7 of the European Union, designed to develop a novel computational strategy to improve climate simulations.

The novelty of this approach is summarized in the concept of supermodeling: a supermodel is an interconnected ensemble of existing imperfect models of a real, observable system. The connections between the models can be learned from observational data using methods from machine learning. The supermodel outperforms the individual models in simulating the behavior of the real system since it has learned to combine the strengths of the individual models. The concept of supermodeling is based on a new combination of insights from climate science, nonlinear dynamical systems, and machine learning.

SUMO has a hierarchical structure as reflected in this graphical representation of the nature of and interconnections between the six work packages. The vertical dimension of the ovals representing each work package reflects the dimensionality of the model systems that are subject of research, the horizontal dimension the amount of experimentation that is possible in that work package. The vertical ordering of the work packages reflects the nature of the research from more fundamental at the bottom to more applied to the top. The colours indicate the prevailing expertise needed in each work package. The arrows reflect the flow of information between the work packages. By the end of the three years of research in SUMO the super modeling strategy will be demonstrated by a climate change simulation with a climate supermodel connecting three state-of-the-art global climate models.